最优检验误差概率的渐近性

Q4 Mathematics Theory of Stochastic Processes Pub Date : 2021-12-11 DOI:10.37863/tsp-9489058429-71
V. Kanišauskas, K. Kanišauskienė
{"title":"最优检验误差概率的渐近性","authors":"V. Kanišauskas, K. Kanišauskienė","doi":"10.37863/tsp-9489058429-71","DOIUrl":null,"url":null,"abstract":"\nWe consider first and second error probabilities of asymptotically optimal tests (Neyman-Pearson, minimax, Bayesian) when two simple hypotheses H1t and H2t parametrized by time t ≥ 0 are tested under the observation Xt of arbitrary nature. \nThe paper provides details on the conditions of asymptotic decrease of probabilities of optimal criteria errors determined by α type Hellinger integral between measures P1t and P2t, demonstrating that in the case of minimax and Bayesian criteria it is sufficient to investigate Hellinger integral, when α ∈ (0,1), and in the case of Neyman-Pearson criterion it is observed only in the environment of point α=1.\nWhereas Kullback-Leibler information distance is always larger than Chernoff distance; we discover that, in the case of Neyman-Pearson criterion, the probability of type II error decreases faster than in the cases of minimax or Bayesian criteria. This is proven by the examples of marked point processes of the i.i.d. case, non-homogeneous Poisson process and the geometric renewal process presented at the end of the paper.\n","PeriodicalId":38143,"journal":{"name":"Theory of Stochastic Processes","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of error probabilities of optimal tests\",\"authors\":\"V. Kanišauskas, K. Kanišauskienė\",\"doi\":\"10.37863/tsp-9489058429-71\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\nWe consider first and second error probabilities of asymptotically optimal tests (Neyman-Pearson, minimax, Bayesian) when two simple hypotheses H1t and H2t parametrized by time t ≥ 0 are tested under the observation Xt of arbitrary nature. \\nThe paper provides details on the conditions of asymptotic decrease of probabilities of optimal criteria errors determined by α type Hellinger integral between measures P1t and P2t, demonstrating that in the case of minimax and Bayesian criteria it is sufficient to investigate Hellinger integral, when α ∈ (0,1), and in the case of Neyman-Pearson criterion it is observed only in the environment of point α=1.\\nWhereas Kullback-Leibler information distance is always larger than Chernoff distance; we discover that, in the case of Neyman-Pearson criterion, the probability of type II error decreases faster than in the cases of minimax or Bayesian criteria. This is proven by the examples of marked point processes of the i.i.d. case, non-homogeneous Poisson process and the geometric renewal process presented at the end of the paper.\\n\",\"PeriodicalId\":38143,\"journal\":{\"name\":\"Theory of Stochastic Processes\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Stochastic Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37863/tsp-9489058429-71\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Stochastic Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37863/tsp-9489058429-71","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在任意性质的观测值Xt下,当参数化为时间t≥0的两个简单假设H1t和H2t被检验时,渐近最优检验(Neyman-Pearson, minimax, Bayesian)的第一次和第二次误差概率。给出了由测度P1t和测度P2t之间的α型Hellinger积分决定的最优判据误差概率渐近减小的条件,证明了在极大极小和贝叶斯判据的情况下,当α∈(0,1)时,研究Hellinger积分是充分的,而在Neyman-Pearson判据的情况下,只在点α=1的环境下观察到。而Kullback-Leibler信息距离总是大于Chernoff距离;我们发现,在Neyman-Pearson准则的情况下,II型错误的概率比极大极小准则或贝叶斯准则的情况下下降得更快。本文最后给出了i.i.d情况下的标记点过程、非齐次泊松过程和几何更新过程的例子,证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymptotics of error probabilities of optimal tests
We consider first and second error probabilities of asymptotically optimal tests (Neyman-Pearson, minimax, Bayesian) when two simple hypotheses H1t and H2t parametrized by time t ≥ 0 are tested under the observation Xt of arbitrary nature. The paper provides details on the conditions of asymptotic decrease of probabilities of optimal criteria errors determined by α type Hellinger integral between measures P1t and P2t, demonstrating that in the case of minimax and Bayesian criteria it is sufficient to investigate Hellinger integral, when α ∈ (0,1), and in the case of Neyman-Pearson criterion it is observed only in the environment of point α=1. Whereas Kullback-Leibler information distance is always larger than Chernoff distance; we discover that, in the case of Neyman-Pearson criterion, the probability of type II error decreases faster than in the cases of minimax or Bayesian criteria. This is proven by the examples of marked point processes of the i.i.d. case, non-homogeneous Poisson process and the geometric renewal process presented at the end of the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Theory of Stochastic Processes
Theory of Stochastic Processes Mathematics-Applied Mathematics
CiteScore
0.20
自引率
0.00%
发文量
0
期刊最新文献
Stochastic process generated by 1-D Ising model with competing interactions Relative error prediction from censored data under α-mixing condition On the properties of multivariate isotropic Random fields on the Ball Generalized BSDEs for time inhomogeneous Lévy processes under non-deterministic Lipschitz coefficient The stochastic approximation method for semi-recursive multivariate kernel-type regression estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1