前高斯分布的贝叶斯估计

Abir El Haj, Y. Slaoui, Clara Solier, C. Perret
{"title":"前高斯分布的贝叶斯估计","authors":"Abir El Haj, Y. Slaoui, Clara Solier, C. Perret","doi":"10.19139/soic-2310-5070-1251","DOIUrl":null,"url":null,"abstract":"Fitting of the exponential modified Gaussian distribution to model reaction times and drawing conclusions from its estimated parameter values is one of the most popular method used in psychology. This paper aims to develop a Bayesian approach to estimate the parameters of the ex-Gaussian distribution. Since the chosen priors yield to posterior densities that are not of known form and that they are not always log-concave, we suggest to use the adaptive rejection Metropolis sampling method. Applications on simulated data and on real data are provided to compare this method to the standard maximum likelihood estimation method as well as the quantile maximum likelihood estimation. Results shows the effectiveness of the proposed Bayesian method by computing the root mean square error of the estimated parameters using the three methods.","PeriodicalId":93376,"journal":{"name":"Statistics, optimization & information computing","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian Estimation of The Ex-Gaussian Distribution\",\"authors\":\"Abir El Haj, Y. Slaoui, Clara Solier, C. Perret\",\"doi\":\"10.19139/soic-2310-5070-1251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fitting of the exponential modified Gaussian distribution to model reaction times and drawing conclusions from its estimated parameter values is one of the most popular method used in psychology. This paper aims to develop a Bayesian approach to estimate the parameters of the ex-Gaussian distribution. Since the chosen priors yield to posterior densities that are not of known form and that they are not always log-concave, we suggest to use the adaptive rejection Metropolis sampling method. Applications on simulated data and on real data are provided to compare this method to the standard maximum likelihood estimation method as well as the quantile maximum likelihood estimation. Results shows the effectiveness of the proposed Bayesian method by computing the root mean square error of the estimated parameters using the three methods.\",\"PeriodicalId\":93376,\"journal\":{\"name\":\"Statistics, optimization & information computing\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics, optimization & information computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19139/soic-2310-5070-1251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics, optimization & information computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19139/soic-2310-5070-1251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

拟合指数修正高斯分布来模拟反应时间并从其估计的参数值中得出结论是心理学中最常用的方法之一。本文旨在发展一种贝叶斯方法来估计前高斯分布的参数。由于所选择的先验产生的后验密度不是已知的形式,而且它们并不总是对数凹的,因此我们建议使用自适应拒绝Metropolis抽样方法。通过模拟数据和实际数据的应用,将该方法与标准极大似然估计方法和分位数极大似然估计方法进行了比较。通过计算三种方法估计参数的均方根误差,验证了所提贝叶斯方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian Estimation of The Ex-Gaussian Distribution
Fitting of the exponential modified Gaussian distribution to model reaction times and drawing conclusions from its estimated parameter values is one of the most popular method used in psychology. This paper aims to develop a Bayesian approach to estimate the parameters of the ex-Gaussian distribution. Since the chosen priors yield to posterior densities that are not of known form and that they are not always log-concave, we suggest to use the adaptive rejection Metropolis sampling method. Applications on simulated data and on real data are provided to compare this method to the standard maximum likelihood estimation method as well as the quantile maximum likelihood estimation. Results shows the effectiveness of the proposed Bayesian method by computing the root mean square error of the estimated parameters using the three methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis Based on Adaptive Progressive Hybrid Censored Data From Lomax Distribution A Berry-Esseen Bound for Nonlinear Statistics with Bounded Differences The Weibull Distribution: Reliability Characterization Based on Linear and Circular Consecutive Systems Infinity Substitute in Finding Exact Minimum of Total Weighted Tardiness in Tight-Tardy Progressive 1-machine Scheduling by Idling-free Preemptions Testing the Validity of Lindley Model Based on Informational Energy with Application to Real Medical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1