用神经网络学习非线性距离函数进行回归,并应用于稳健的人类年龄估计

N. Fan
{"title":"用神经网络学习非线性距离函数进行回归,并应用于稳健的人类年龄估计","authors":"N. Fan","doi":"10.1109/ICCV.2011.6126249","DOIUrl":null,"url":null,"abstract":"In this paper, a robust regression method is proposed for human age estimation, in which, outlier samples are corrected by their neighbors, through asymptotically increasing the correlation coefficients between the desired distances and the distances of sample labels. As another extension, we adopt a nonlinear distance function and approximate it by neural network. For fair comparison, we also experiment on the regression problem of age estimation from face images, and the results are very competitive among the state of the art.","PeriodicalId":6391,"journal":{"name":"2011 International Conference on Computer Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Learning nonlinear distance functions using neural network for regression with application to robust human age estimation\",\"authors\":\"N. Fan\",\"doi\":\"10.1109/ICCV.2011.6126249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a robust regression method is proposed for human age estimation, in which, outlier samples are corrected by their neighbors, through asymptotically increasing the correlation coefficients between the desired distances and the distances of sample labels. As another extension, we adopt a nonlinear distance function and approximate it by neural network. For fair comparison, we also experiment on the regression problem of age estimation from face images, and the results are very competitive among the state of the art.\",\"PeriodicalId\":6391,\"journal\":{\"name\":\"2011 International Conference on Computer Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2011.6126249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2011.6126249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种用于人类年龄估计的鲁棒回归方法,该方法通过渐近增加期望距离与样本标签距离之间的相关系数,对离群样本进行邻域校正。作为另一种扩展,我们采用了非线性距离函数,并用神经网络对其进行近似。为了公平比较,我们还对人脸图像年龄估计的回归问题进行了实验,结果在目前的研究中具有很强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning nonlinear distance functions using neural network for regression with application to robust human age estimation
In this paper, a robust regression method is proposed for human age estimation, in which, outlier samples are corrected by their neighbors, through asymptotically increasing the correlation coefficients between the desired distances and the distances of sample labels. As another extension, we adopt a nonlinear distance function and approximate it by neural network. For fair comparison, we also experiment on the regression problem of age estimation from face images, and the results are very competitive among the state of the art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust and efficient parametric face alignment Video parsing for abnormality detection From learning models of natural image patches to whole image restoration Discriminative figure-centric models for joint action localization and recognition A general preconditioning scheme for difference measures in deformable registration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1