锰酸锌/氧化锰双组分纳米棒作为锌离子电池的优良阴极

Shiyue Ma, Si-Xu Wang, Dong-Shuai Li, Weiliang Liu, M. Ren, Fanyuan Kong, Shoujuan Wang, Yongjao Xia
{"title":"锰酸锌/氧化锰双组分纳米棒作为锌离子电池的优良阴极","authors":"Shiyue Ma, Si-Xu Wang, Dong-Shuai Li, Weiliang Liu, M. Ren, Fanyuan Kong, Shoujuan Wang, Yongjao Xia","doi":"10.2139/ssrn.3674206","DOIUrl":null,"url":null,"abstract":"Abstract Rechargeable aqueous zinc-ion batteries (ZIBs) have been receiving much attention because they are cheap, safe, and environment-friendly. However, their application is bottlenecked by limitation in high-capacity cathode and types of materials to achieve satisfactory cyclability. Therefore, developing new cathode materials for rechargeable zinc-ion batteries is essential. Herein, we report promising ZIBs based on metal-organic framework-derived 2-methylimidazole zinc salt (ZIF-8)/Mn2O3 nanocomposites as cathode and zinc as the anode. ZnMn2O4/Mn2O3 bi-component nanorods were synthesized by annealing ZIF-8/MnO2 precursors, which showed a reversible discharge capacity of 230 mAh g–1 at 100 mA g–1 after 120 cycles and a high capacity of 80 mAh g–1 at a large current density of 1000 mA g–1. The superior zinc storage performance is attributed to the synergistic effect between ZnMn2O4 and Mn2O3.","PeriodicalId":18300,"journal":{"name":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Zinc Manganate/Manganic Oxide Bi-Component Nanorod as Excellent Cathode for Zinc-Ion Battery\",\"authors\":\"Shiyue Ma, Si-Xu Wang, Dong-Shuai Li, Weiliang Liu, M. Ren, Fanyuan Kong, Shoujuan Wang, Yongjao Xia\",\"doi\":\"10.2139/ssrn.3674206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Rechargeable aqueous zinc-ion batteries (ZIBs) have been receiving much attention because they are cheap, safe, and environment-friendly. However, their application is bottlenecked by limitation in high-capacity cathode and types of materials to achieve satisfactory cyclability. Therefore, developing new cathode materials for rechargeable zinc-ion batteries is essential. Herein, we report promising ZIBs based on metal-organic framework-derived 2-methylimidazole zinc salt (ZIF-8)/Mn2O3 nanocomposites as cathode and zinc as the anode. ZnMn2O4/Mn2O3 bi-component nanorods were synthesized by annealing ZIF-8/MnO2 precursors, which showed a reversible discharge capacity of 230 mAh g–1 at 100 mA g–1 after 120 cycles and a high capacity of 80 mAh g–1 at a large current density of 1000 mA g–1. The superior zinc storage performance is attributed to the synergistic effect between ZnMn2O4 and Mn2O3.\",\"PeriodicalId\":18300,\"journal\":{\"name\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MatSciRN: Other Materials Processing & Manufacturing (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3674206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MatSciRN: Other Materials Processing & Manufacturing (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3674206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

摘要可充水锌离子电池(zib)因其廉价、安全、环保等优点而备受关注。然而,它们的应用受到高容量阴极和材料类型的限制,以达到令人满意的可循环性。因此,开发可充电锌离子电池的新型正极材料至关重要。在此,我们报道了基于金属-有机框架衍生的2-甲基咪唑锌盐(ZIF-8)/Mn2O3纳米复合材料作为阴极和锌作为阳极的有前途的ZIBs。通过对ZIF-8/MnO2前驱体的退火,合成了ZnMn2O4/Mn2O3双组分纳米棒,该纳米棒在100 mA g-1下循环120次后具有230 mAh g-1的可逆放电容量,在1000 mA g-1的大电流密度下具有80 mAh g-1的高容量。ZnMn2O4和Mn2O3之间的协同作用是其优异的储锌性能的主要原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zinc Manganate/Manganic Oxide Bi-Component Nanorod as Excellent Cathode for Zinc-Ion Battery
Abstract Rechargeable aqueous zinc-ion batteries (ZIBs) have been receiving much attention because they are cheap, safe, and environment-friendly. However, their application is bottlenecked by limitation in high-capacity cathode and types of materials to achieve satisfactory cyclability. Therefore, developing new cathode materials for rechargeable zinc-ion batteries is essential. Herein, we report promising ZIBs based on metal-organic framework-derived 2-methylimidazole zinc salt (ZIF-8)/Mn2O3 nanocomposites as cathode and zinc as the anode. ZnMn2O4/Mn2O3 bi-component nanorods were synthesized by annealing ZIF-8/MnO2 precursors, which showed a reversible discharge capacity of 230 mAh g–1 at 100 mA g–1 after 120 cycles and a high capacity of 80 mAh g–1 at a large current density of 1000 mA g–1. The superior zinc storage performance is attributed to the synergistic effect between ZnMn2O4 and Mn2O3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Creating a Methodology to Train Manufacturing SMEs: The Lift Europe Case Scenario-based Simulation for Energy Optimization in Learning Factory Environments Rod Eutectic Growth of Al-Al 3Sc in Al-2 Wt. % Sc Undercooled Melt Zinc Manganate/Manganic Oxide Bi-Component Nanorod as Excellent Cathode for Zinc-Ion Battery Designing an Improved Structure of the Tool for Repairing the Brake Pipe Connectors in Vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1