模型水动力涡旋分离器停留时间分布

R.M Alkhaddar , P.R Higgins , D.A Phipps , R.Y.G Andoh
{"title":"模型水动力涡旋分离器停留时间分布","authors":"R.M Alkhaddar ,&nbsp;P.R Higgins ,&nbsp;D.A Phipps ,&nbsp;R.Y.G Andoh","doi":"10.1016/S1462-0758(01)00015-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the macromixing within a hydrodynamic vortex separator (HDVS). The device is a scale model of a prototype unit and is operated with zero baseflow. The device under investigation is typically used for the removal of settleable and colloidal solids. The macromixing is investigated by conducting tracer experiments from which the residence time distribution (RTD) is obtained and interpreted to characterise the mixing regime within the HDVS. The method of moments and non-linear regression are used to obtain various RTD functions and flow-model parameters to aid in the characterisation of the device's mixing regime and the degree of any non-ideal flow behaviour. The axial dispersion model (ADM) and tanks-in-series model (TISM) are used in this study. The RTD imperfectly approximates a plug-flow distribution but, the device has some amount of dispersion and is equal to approximately 2–3 perfectly stirred tanks in series. The ADM seems to give a closer representation of the experimental curves compared to the TISM. The sludge hopper appears to be acting as a stagnant zone.</p></div>","PeriodicalId":101268,"journal":{"name":"Urban Water","volume":"3 1","pages":"Pages 17-24"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1462-0758(01)00015-2","citationCount":"27","resultStr":"{\"title\":\"Residence time distribution of a model hydrodynamic vortex separator\",\"authors\":\"R.M Alkhaddar ,&nbsp;P.R Higgins ,&nbsp;D.A Phipps ,&nbsp;R.Y.G Andoh\",\"doi\":\"10.1016/S1462-0758(01)00015-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the macromixing within a hydrodynamic vortex separator (HDVS). The device is a scale model of a prototype unit and is operated with zero baseflow. The device under investigation is typically used for the removal of settleable and colloidal solids. The macromixing is investigated by conducting tracer experiments from which the residence time distribution (RTD) is obtained and interpreted to characterise the mixing regime within the HDVS. The method of moments and non-linear regression are used to obtain various RTD functions and flow-model parameters to aid in the characterisation of the device's mixing regime and the degree of any non-ideal flow behaviour. The axial dispersion model (ADM) and tanks-in-series model (TISM) are used in this study. The RTD imperfectly approximates a plug-flow distribution but, the device has some amount of dispersion and is equal to approximately 2–3 perfectly stirred tanks in series. The ADM seems to give a closer representation of the experimental curves compared to the TISM. The sludge hopper appears to be acting as a stagnant zone.</p></div>\",\"PeriodicalId\":101268,\"journal\":{\"name\":\"Urban Water\",\"volume\":\"3 1\",\"pages\":\"Pages 17-24\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1462-0758(01)00015-2\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Urban Water\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1462075801000152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Water","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1462075801000152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

本文研究了流体动力涡旋分离器(HDVS)内的宏观混合。该装置是原型装置的比例模型,在零基流条件下运行。所研究的装置通常用于去除可沉淀和胶体固体。通过进行示踪实验来研究宏观混合,从中获得并解释了停留时间分布(RTD),以表征HDVS内的混合状态。矩量法和非线性回归法用于获得各种RTD函数和流动模型参数,以帮助表征装置的混合状态和任何非理想流动行为的程度。本研究采用轴向分散模型(ADM)和串联储罐模型(TISM)。RTD不完全近似于塞流分布,但该装置有一定程度的分散,大约等于2-3个完全搅拌的槽串联。与TISM相比,ADM似乎更能反映实验曲线。污泥漏斗看起来就像一个停滞区。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Residence time distribution of a model hydrodynamic vortex separator

This study investigates the macromixing within a hydrodynamic vortex separator (HDVS). The device is a scale model of a prototype unit and is operated with zero baseflow. The device under investigation is typically used for the removal of settleable and colloidal solids. The macromixing is investigated by conducting tracer experiments from which the residence time distribution (RTD) is obtained and interpreted to characterise the mixing regime within the HDVS. The method of moments and non-linear regression are used to obtain various RTD functions and flow-model parameters to aid in the characterisation of the device's mixing regime and the degree of any non-ideal flow behaviour. The axial dispersion model (ADM) and tanks-in-series model (TISM) are used in this study. The RTD imperfectly approximates a plug-flow distribution but, the device has some amount of dispersion and is equal to approximately 2–3 perfectly stirred tanks in series. The ADM seems to give a closer representation of the experimental curves compared to the TISM. The sludge hopper appears to be acting as a stagnant zone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Editorial board A data mining approach to modelling of water supply assets Contaminant flows in urban residential water systems Supercritical flow in the 90° junction manhole
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1