J. Yokawa, C. Nakanishi, Masayuki Mori, K. Sakata, H. Okada, M. Shimojima, S. Yoshida, K. Hayashi, M. Yamagishi, M. Kawashiri
{"title":"增强心肌细胞递送装置:猪心脏验证","authors":"J. Yokawa, C. Nakanishi, Masayuki Mori, K. Sakata, H. Okada, M. Shimojima, S. Yoshida, K. Hayashi, M. Yamagishi, M. Kawashiri","doi":"10.4172/2157-7552.1000204","DOIUrl":null,"url":null,"abstract":"Background: Endocardial infusion is a minimally invasive procedure for cell delivery with good selectivity to the target region. However, certain limitations to current devices could affect the precision of the procedure and the therapeutic outcome. Therefore, we developed an enhanced device for transendocardial cell infusion. Methods and Results: Our device is based on an electrode-guided transendocardial bidirectional 75 cm long catheter and 0.5 mm diameter inner needle. The key advantages of our device are the slender catheter diameter (7 Fr), consistent needle tip length, regulation of the catheter angle and independence between the needle and catheter. Mesenchymal stem cells (MSCs) were obtained from the inguinal adipose tissue of six healthy swine and propagated through 2-3 passages. Using the catheter, pre-labeled MSCs were infused autogenously into the swine hearts. The MSCs-infused myocardial regions were harvested on the infusion day (day 0) or 2 days later, and histological analysis was performed. The MSCs were successfully infused into all six swine myocardia and distributed along the hole made by the needle. The spread area of MSCs was larger at 2 days after infusion than at day 0 (1.38 ± 0.26 vs. 0.51 ± 0.17 mm2/infusion, p=0.013). No complications occurred during the procedure, such as cardiac tamponade or arrhythmia. Conclusion: These results demonstrate that our enhanced device could be useful for delivering cells into the myocardium.","PeriodicalId":17539,"journal":{"name":"Journal of Tissue Science and Engineering","volume":"42 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Device for Cell Delivery to the Myocardium: Validation in Swine Hearts\",\"authors\":\"J. Yokawa, C. Nakanishi, Masayuki Mori, K. Sakata, H. Okada, M. Shimojima, S. Yoshida, K. Hayashi, M. Yamagishi, M. Kawashiri\",\"doi\":\"10.4172/2157-7552.1000204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Endocardial infusion is a minimally invasive procedure for cell delivery with good selectivity to the target region. However, certain limitations to current devices could affect the precision of the procedure and the therapeutic outcome. Therefore, we developed an enhanced device for transendocardial cell infusion. Methods and Results: Our device is based on an electrode-guided transendocardial bidirectional 75 cm long catheter and 0.5 mm diameter inner needle. The key advantages of our device are the slender catheter diameter (7 Fr), consistent needle tip length, regulation of the catheter angle and independence between the needle and catheter. Mesenchymal stem cells (MSCs) were obtained from the inguinal adipose tissue of six healthy swine and propagated through 2-3 passages. Using the catheter, pre-labeled MSCs were infused autogenously into the swine hearts. The MSCs-infused myocardial regions were harvested on the infusion day (day 0) or 2 days later, and histological analysis was performed. The MSCs were successfully infused into all six swine myocardia and distributed along the hole made by the needle. The spread area of MSCs was larger at 2 days after infusion than at day 0 (1.38 ± 0.26 vs. 0.51 ± 0.17 mm2/infusion, p=0.013). No complications occurred during the procedure, such as cardiac tamponade or arrhythmia. Conclusion: These results demonstrate that our enhanced device could be useful for delivering cells into the myocardium.\",\"PeriodicalId\":17539,\"journal\":{\"name\":\"Journal of Tissue Science and Engineering\",\"volume\":\"42 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Tissue Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2157-7552.1000204\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Tissue Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2157-7552.1000204","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
背景:心内膜输注是一种微创的细胞递送方法,对靶区有良好的选择性。然而,当前设备的某些限制可能会影响手术的精度和治疗结果。因此,我们开发了一种经心内膜细胞输注的增强装置。方法和结果:我们的装置是基于电极引导的经心内膜双向75 cm长导管和0.5 mm直径的内针。我们的设备的主要优点是导管直径细长(7fr),针尖长度一致,导管角度调节,针和导管之间独立。从6只健康猪的腹股沟脂肪组织中获得间充质干细胞(MSCs),并通过2-3传代进行增殖。利用导管,将预先标记的间充质干细胞自体注入猪心脏。在输注第0天或2天后采集骨髓间充质干细胞灌注心肌区域,并进行组织学分析。骨髓间充质干细胞成功注入6块猪心肌,并沿针孔分布。注射后第2天MSCs的扩散面积大于第0天(1.38±0.26 vs 0.51±0.17 mm2/次,p=0.013)。术中未发生心包填塞、心律失常等并发症。结论:该装置可用于将细胞送入心肌。
Enhanced Device for Cell Delivery to the Myocardium: Validation in Swine Hearts
Background: Endocardial infusion is a minimally invasive procedure for cell delivery with good selectivity to the target region. However, certain limitations to current devices could affect the precision of the procedure and the therapeutic outcome. Therefore, we developed an enhanced device for transendocardial cell infusion. Methods and Results: Our device is based on an electrode-guided transendocardial bidirectional 75 cm long catheter and 0.5 mm diameter inner needle. The key advantages of our device are the slender catheter diameter (7 Fr), consistent needle tip length, regulation of the catheter angle and independence between the needle and catheter. Mesenchymal stem cells (MSCs) were obtained from the inguinal adipose tissue of six healthy swine and propagated through 2-3 passages. Using the catheter, pre-labeled MSCs were infused autogenously into the swine hearts. The MSCs-infused myocardial regions were harvested on the infusion day (day 0) or 2 days later, and histological analysis was performed. The MSCs were successfully infused into all six swine myocardia and distributed along the hole made by the needle. The spread area of MSCs was larger at 2 days after infusion than at day 0 (1.38 ± 0.26 vs. 0.51 ± 0.17 mm2/infusion, p=0.013). No complications occurred during the procedure, such as cardiac tamponade or arrhythmia. Conclusion: These results demonstrate that our enhanced device could be useful for delivering cells into the myocardium.