{"title":"为研究脑电活动而计算脑电图的循环特性","authors":"V. Aristov, O. Kubryak, I. Stepanyan","doi":"10.18500/0869-6632-003051","DOIUrl":null,"url":null,"abstract":"The purpose of the study is experimental verification of the proposed EEG analysis method based on the construction of a connectivity graph of the analyzed signal, in which the amplitudes are displayed by vertices, and their relative position relative to each other by arcs. The display of the EEG signal in the graph structure causes the appearance of cyclic structures with the possibility of calculating their numerical characteristics. As a result of the study, criteria for initialization of the initial conditions of the counting algorithm have been developed. The following parameters were calculated: the number of cycles and the Euler number in the EEG recording. Coil representations of graphs are given. The proposed algorithm has a scaling parameter, the choice of which affects the final results. The second free parameter of the proposed algorithm is the degree of artificial signal coarsening. Variants of the algorithm application for multichannel EEG signals with multichannel signal processing by channel-by-channel detection of semantic units and construction of a generalized semantic connectivity graph are considered. An example of an analyzed multichannel EEG signal, which was pre-processed with reduction of all amplitudes to natural numbers in accordance with the calculated characteristics, is given. An example of an EEG of a subject with closed eyes during quiet wakefulness and an EEG of a subject with open eyes is given. In Conclusion, it is shown that the final indicators can vary significantly (from zero to tens of thousands or more) depending on the particular derivation of the EEG channel. Analysis of the cyclic structures of the electroencephalogram seems to be a potential way to assess various human states due to the possibility of distinguishing them using the proposed method. The study has a limited, pilot character.","PeriodicalId":41611,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","volume":"143 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain\",\"authors\":\"V. Aristov, O. Kubryak, I. Stepanyan\",\"doi\":\"10.18500/0869-6632-003051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of the study is experimental verification of the proposed EEG analysis method based on the construction of a connectivity graph of the analyzed signal, in which the amplitudes are displayed by vertices, and their relative position relative to each other by arcs. The display of the EEG signal in the graph structure causes the appearance of cyclic structures with the possibility of calculating their numerical characteristics. As a result of the study, criteria for initialization of the initial conditions of the counting algorithm have been developed. The following parameters were calculated: the number of cycles and the Euler number in the EEG recording. Coil representations of graphs are given. The proposed algorithm has a scaling parameter, the choice of which affects the final results. The second free parameter of the proposed algorithm is the degree of artificial signal coarsening. Variants of the algorithm application for multichannel EEG signals with multichannel signal processing by channel-by-channel detection of semantic units and construction of a generalized semantic connectivity graph are considered. An example of an analyzed multichannel EEG signal, which was pre-processed with reduction of all amplitudes to natural numbers in accordance with the calculated characteristics, is given. An example of an EEG of a subject with closed eyes during quiet wakefulness and an EEG of a subject with open eyes is given. In Conclusion, it is shown that the final indicators can vary significantly (from zero to tens of thousands or more) depending on the particular derivation of the EEG channel. Analysis of the cyclic structures of the electroencephalogram seems to be a potential way to assess various human states due to the possibility of distinguishing them using the proposed method. The study has a limited, pilot character.\",\"PeriodicalId\":41611,\"journal\":{\"name\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"volume\":\"143 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18500/0869-6632-003051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedeniy-Prikladnaya Nelineynaya Dinamika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/0869-6632-003051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Calculation of the cyclic characteristics of the electroencephalogram for investigation of the electrical activity of the brain
The purpose of the study is experimental verification of the proposed EEG analysis method based on the construction of a connectivity graph of the analyzed signal, in which the amplitudes are displayed by vertices, and their relative position relative to each other by arcs. The display of the EEG signal in the graph structure causes the appearance of cyclic structures with the possibility of calculating their numerical characteristics. As a result of the study, criteria for initialization of the initial conditions of the counting algorithm have been developed. The following parameters were calculated: the number of cycles and the Euler number in the EEG recording. Coil representations of graphs are given. The proposed algorithm has a scaling parameter, the choice of which affects the final results. The second free parameter of the proposed algorithm is the degree of artificial signal coarsening. Variants of the algorithm application for multichannel EEG signals with multichannel signal processing by channel-by-channel detection of semantic units and construction of a generalized semantic connectivity graph are considered. An example of an analyzed multichannel EEG signal, which was pre-processed with reduction of all amplitudes to natural numbers in accordance with the calculated characteristics, is given. An example of an EEG of a subject with closed eyes during quiet wakefulness and an EEG of a subject with open eyes is given. In Conclusion, it is shown that the final indicators can vary significantly (from zero to tens of thousands or more) depending on the particular derivation of the EEG channel. Analysis of the cyclic structures of the electroencephalogram seems to be a potential way to assess various human states due to the possibility of distinguishing them using the proposed method. The study has a limited, pilot character.
期刊介绍:
Scientific and technical journal Izvestiya VUZ. Applied Nonlinear Dynamics is an original interdisciplinary publication of wide focus. The journal is included in the List of periodic scientific and technical publications of the Russian Federation, recommended for doctoral thesis publications of State Commission for Academic Degrees and Titles at the Ministry of Education and Science of the Russian Federation, indexed by Scopus, RSCI. The journal is published in Russian (English articles are also acceptable, with the possibility of publishing selected articles in other languages by agreement with the editors), the articles data as well as abstracts, keywords and references are consistently translated into English. First and foremost the journal publishes original research in the following areas: -Nonlinear Waves. Solitons. Autowaves. Self-Organization. -Bifurcation in Dynamical Systems. Deterministic Chaos. Quantum Chaos. -Applied Problems of Nonlinear Oscillation and Wave Theory. -Modeling of Global Processes. Nonlinear Dynamics and Humanities. -Innovations in Applied Physics. -Nonlinear Dynamics and Neuroscience. All articles are consistently sent for independent, anonymous peer review by leading experts in the relevant fields, the decision to publish is made by the Editorial Board and is based on the review. In complicated and disputable cases it is possible to review the manuscript twice or three times. The journal publishes review papers, educational papers, related to the history of science and technology articles in the following sections: -Reviews of Actual Problems of Nonlinear Dynamics. -Science for Education. Methodical Papers. -History of Nonlinear Dynamics. Personalia.