{"title":"自主移动机器人导航在早期作物生长中的应用","authors":"L. Emmi, Jesus Herrera-Diaz, P. Santos","doi":"10.5220/0011265600003271","DOIUrl":null,"url":null,"abstract":": This paper presents a general procedure for enabling autonomous row following in crops during early-stage growth, without relying on absolute localization systems. A model based on deep learning techniques (object detection for wide-row crops and segmentation for narrow-row crops) was applied to accurately detect both types of crops. Tests were performed using a manually operated mobile platform equipped with an RGB and a time-of-flight (ToF) cameras. Data were acquired during different time periods and weather conditions, in maize and wheat fields. The results showed the success on crop detection and enables the future development of a fully autonomous navigation system in cultivated fields during early stage of crop growth.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"35 1","pages":"411-418"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Toward Autonomous Mobile Robot Navigation in Early-Stage Crop Growth\",\"authors\":\"L. Emmi, Jesus Herrera-Diaz, P. Santos\",\"doi\":\"10.5220/0011265600003271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper presents a general procedure for enabling autonomous row following in crops during early-stage growth, without relying on absolute localization systems. A model based on deep learning techniques (object detection for wide-row crops and segmentation for narrow-row crops) was applied to accurately detect both types of crops. Tests were performed using a manually operated mobile platform equipped with an RGB and a time-of-flight (ToF) cameras. Data were acquired during different time periods and weather conditions, in maize and wheat fields. The results showed the success on crop detection and enables the future development of a fully autonomous navigation system in cultivated fields during early stage of crop growth.\",\"PeriodicalId\":6436,\"journal\":{\"name\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"volume\":\"35 1\",\"pages\":\"411-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011265600003271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011265600003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Toward Autonomous Mobile Robot Navigation in Early-Stage Crop Growth
: This paper presents a general procedure for enabling autonomous row following in crops during early-stage growth, without relying on absolute localization systems. A model based on deep learning techniques (object detection for wide-row crops and segmentation for narrow-row crops) was applied to accurately detect both types of crops. Tests were performed using a manually operated mobile platform equipped with an RGB and a time-of-flight (ToF) cameras. Data were acquired during different time periods and weather conditions, in maize and wheat fields. The results showed the success on crop detection and enables the future development of a fully autonomous navigation system in cultivated fields during early stage of crop growth.