{"title":"静水压力对纳米铋热导率的影响","authors":"Tahseen A. Husai̇n, I. Qader","doi":"10.31202/ecjse.1123146","DOIUrl":null,"url":null,"abstract":"In this study, a simulation of theoretical calculation of Lattice thermal conductivity of Bismuth bulk and nanowires with diameters of 98, 115, and 327 nm in the temperature range of 10 ‒ 300 K and pressure range of 0 ‒ 1.6 GPa was investigated. These calculations were achieved by using the Morelli Callaway model and the Clapeyron equation that both longitudinal and transverse modes are taken into account. Melting temperature, mass density, unit cell volume, mean bond length, lattice parameter, group velocity, and longitudinal and transverse Debye temperature for all transverse and longitudinal modes were calculated for each NW diameter mentioned.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Hydrostatic Pressure on Thermal Conductivity of Nanostructured Bi\",\"authors\":\"Tahseen A. Husai̇n, I. Qader\",\"doi\":\"10.31202/ecjse.1123146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a simulation of theoretical calculation of Lattice thermal conductivity of Bismuth bulk and nanowires with diameters of 98, 115, and 327 nm in the temperature range of 10 ‒ 300 K and pressure range of 0 ‒ 1.6 GPa was investigated. These calculations were achieved by using the Morelli Callaway model and the Clapeyron equation that both longitudinal and transverse modes are taken into account. Melting temperature, mass density, unit cell volume, mean bond length, lattice parameter, group velocity, and longitudinal and transverse Debye temperature for all transverse and longitudinal modes were calculated for each NW diameter mentioned.\",\"PeriodicalId\":11622,\"journal\":{\"name\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31202/ecjse.1123146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1123146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Impact of Hydrostatic Pressure on Thermal Conductivity of Nanostructured Bi
In this study, a simulation of theoretical calculation of Lattice thermal conductivity of Bismuth bulk and nanowires with diameters of 98, 115, and 327 nm in the temperature range of 10 ‒ 300 K and pressure range of 0 ‒ 1.6 GPa was investigated. These calculations were achieved by using the Morelli Callaway model and the Clapeyron equation that both longitudinal and transverse modes are taken into account. Melting temperature, mass density, unit cell volume, mean bond length, lattice parameter, group velocity, and longitudinal and transverse Debye temperature for all transverse and longitudinal modes were calculated for each NW diameter mentioned.