基于主体的模型作为etio - prognosis的解释

Q2 Arts and Humanities Argumenta Pub Date : 2021-01-01 DOI:10.14275/2465-2334/202113.dam
O. Dammann
{"title":"基于主体的模型作为etio - prognosis的解释","authors":"O. Dammann","doi":"10.14275/2465-2334/202113.dam","DOIUrl":null,"url":null,"abstract":"Agent-based models (ABMs) are one type of simulation model used in the context of the COVID-19 pandemic. In contrast to equation-based models, ABMs are algorithms that use individual agents and attribute changing characteristics to each one, multiple times during multiple iterations over time. This paper focuses on three philosophical aspects of ABMs as models of causal mechanisms, as generators of emergent phenomena, and as providers of explanation. Based on my discussion, I conclude that while ABMs cannot help much with causal inference, they can be viewed as etio-prognostic explanations of illness occurrence and outcome. © 2021 University of Sassari","PeriodicalId":31489,"journal":{"name":"Argumenta","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Agent-Based Models as Etio-Prognostic Explanations\",\"authors\":\"O. Dammann\",\"doi\":\"10.14275/2465-2334/202113.dam\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agent-based models (ABMs) are one type of simulation model used in the context of the COVID-19 pandemic. In contrast to equation-based models, ABMs are algorithms that use individual agents and attribute changing characteristics to each one, multiple times during multiple iterations over time. This paper focuses on three philosophical aspects of ABMs as models of causal mechanisms, as generators of emergent phenomena, and as providers of explanation. Based on my discussion, I conclude that while ABMs cannot help much with causal inference, they can be viewed as etio-prognostic explanations of illness occurrence and outcome. © 2021 University of Sassari\",\"PeriodicalId\":31489,\"journal\":{\"name\":\"Argumenta\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Argumenta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14275/2465-2334/202113.dam\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Argumenta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14275/2465-2334/202113.dam","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 1

摘要

基于主体的模型(ABMs)是在COVID-19大流行背景下使用的一种模拟模型。与基于方程的模型相反,abm是使用单个代理的算法,并在多次迭代过程中多次为每个代理赋予变化特征。本文着重从三个哲学方面探讨了ABMs作为因果机制的模型、作为涌现现象的产生者和作为解释的提供者。基于我的讨论,我的结论是,虽然ABMs对因果推理没有多大帮助,但它们可以被视为对疾病发生和结果的病因预后解释。©2021萨萨里大学
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Agent-Based Models as Etio-Prognostic Explanations
Agent-based models (ABMs) are one type of simulation model used in the context of the COVID-19 pandemic. In contrast to equation-based models, ABMs are algorithms that use individual agents and attribute changing characteristics to each one, multiple times during multiple iterations over time. This paper focuses on three philosophical aspects of ABMs as models of causal mechanisms, as generators of emergent phenomena, and as providers of explanation. Based on my discussion, I conclude that while ABMs cannot help much with causal inference, they can be viewed as etio-prognostic explanations of illness occurrence and outcome. © 2021 University of Sassari
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
17 weeks
期刊最新文献
Agent-Based Models as Etio-Prognostic Explanations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1