S. Brilleman, R. Wolfe, M. Moreno-Betancur, M. Crowther
{"title":"使用simsurv R包模拟生存数据","authors":"S. Brilleman, R. Wolfe, M. Moreno-Betancur, M. Crowther","doi":"10.18637/JSS.V097.I03","DOIUrl":null,"url":null,"abstract":"The simsurv R package allows users to simulate survival (i.e., time-to-event) data from standard parametric distributions (exponential, Weibull, and Gompertz), two-component mixture distributions, or a user-defined hazard function. Baseline covariates can be included under a proportional hazards assumption. Clustered event times, for example individuals within a family, are also easily accommodated. Time-dependent effects (i.e., nonproportional hazards) can be included by interacting covariates with linear time or a user-defined function of time. Under a user-defined hazard function, event times can be generated for a variety of complex models such as flexible (spline-based) baseline hazards, models with time-varying covariates, or joint longitudinal-survival models.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"1 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Simulating Survival Data Using the simsurv R Package\",\"authors\":\"S. Brilleman, R. Wolfe, M. Moreno-Betancur, M. Crowther\",\"doi\":\"10.18637/JSS.V097.I03\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The simsurv R package allows users to simulate survival (i.e., time-to-event) data from standard parametric distributions (exponential, Weibull, and Gompertz), two-component mixture distributions, or a user-defined hazard function. Baseline covariates can be included under a proportional hazards assumption. Clustered event times, for example individuals within a family, are also easily accommodated. Time-dependent effects (i.e., nonproportional hazards) can be included by interacting covariates with linear time or a user-defined function of time. Under a user-defined hazard function, event times can be generated for a variety of complex models such as flexible (spline-based) baseline hazards, models with time-varying covariates, or joint longitudinal-survival models.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/JSS.V097.I03\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/JSS.V097.I03","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Simulating Survival Data Using the simsurv R Package
The simsurv R package allows users to simulate survival (i.e., time-to-event) data from standard parametric distributions (exponential, Weibull, and Gompertz), two-component mixture distributions, or a user-defined hazard function. Baseline covariates can be included under a proportional hazards assumption. Clustered event times, for example individuals within a family, are also easily accommodated. Time-dependent effects (i.e., nonproportional hazards) can be included by interacting covariates with linear time or a user-defined function of time. Under a user-defined hazard function, event times can be generated for a variety of complex models such as flexible (spline-based) baseline hazards, models with time-varying covariates, or joint longitudinal-survival models.
期刊介绍:
The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.