Slicepedia:为自适应超媒体提供开放web资源的自定义重用

Killian Levacher, S. Lawless, V. Wade
{"title":"Slicepedia:为自适应超媒体提供开放web资源的自定义重用","authors":"Killian Levacher, S. Lawless, V. Wade","doi":"10.1145/2309996.2310002","DOIUrl":null,"url":null,"abstract":"A key advantage of Adaptive Hypermedia Systems (AHS) is their ability to re-sequence and reintegrate content to satisfy particular user needs. However, this can require large volumes of content, with appropriate granularities and suitable meta-data descriptions. This represents a major impediment to the mainstream adoption of Adaptive Hypermedia. Open Adaptive Hypermedia systems have addressed this challenge by leveraging open corpus content available on the World Wide Web. However, the full reuse potential of such content is yet to be leveraged. Open corpus content is today still mainly available as only one-size-fits-all document-level information objects. Automatically customizing and right-fitting open corpus content with the aim of improving its amenability to reuse would enable AHS to more effectively utilise these resources.\n This paper presents a novel architecture and service called Slicepedia, which processes open corpus resources for reuse within AHS. The aim of this service is to improve the reuse of open corpus content by right-fitting it to the specific content requirements of individual systems. Complementary techniques from Information Retrieval, Content Fragmentation, Information Extraction and Semantic Web are leveraged to convert the original resources into information objects called slices. The service has been applied in an authentic language elearning scenario to validate the quality of the slicing and reuse. A user trial, involving language learners, was also conducted. The evidence clearly shows that the reuse of open corpus content in AHS is improved by this approach, with minimal decrease in the quality of the original content harvested.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"33 1","pages":"23-32"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Slicepedia: providing customized reuse of open-web resources for adaptive hypermedia\",\"authors\":\"Killian Levacher, S. Lawless, V. Wade\",\"doi\":\"10.1145/2309996.2310002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A key advantage of Adaptive Hypermedia Systems (AHS) is their ability to re-sequence and reintegrate content to satisfy particular user needs. However, this can require large volumes of content, with appropriate granularities and suitable meta-data descriptions. This represents a major impediment to the mainstream adoption of Adaptive Hypermedia. Open Adaptive Hypermedia systems have addressed this challenge by leveraging open corpus content available on the World Wide Web. However, the full reuse potential of such content is yet to be leveraged. Open corpus content is today still mainly available as only one-size-fits-all document-level information objects. Automatically customizing and right-fitting open corpus content with the aim of improving its amenability to reuse would enable AHS to more effectively utilise these resources.\\n This paper presents a novel architecture and service called Slicepedia, which processes open corpus resources for reuse within AHS. The aim of this service is to improve the reuse of open corpus content by right-fitting it to the specific content requirements of individual systems. Complementary techniques from Information Retrieval, Content Fragmentation, Information Extraction and Semantic Web are leveraged to convert the original resources into information objects called slices. The service has been applied in an authentic language elearning scenario to validate the quality of the slicing and reuse. A user trial, involving language learners, was also conducted. The evidence clearly shows that the reuse of open corpus content in AHS is improved by this approach, with minimal decrease in the quality of the original content harvested.\",\"PeriodicalId\":91270,\"journal\":{\"name\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"volume\":\"33 1\",\"pages\":\"23-32\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2309996.2310002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2309996.2310002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

自适应超媒体系统(AHS)的一个关键优势是它们能够重新排序和重新集成内容以满足特定用户的需求。然而,这可能需要大量的内容,具有适当的粒度和合适的元数据描述。这是主流采用自适应超媒体的主要障碍。开放自适应超媒体系统通过利用万维网上可用的开放语料库内容解决了这一挑战。然而,这些内容的全部重用潜力尚未得到充分利用。开放语料库内容目前仍然主要是作为“一刀切”的文档级信息对象提供的。自动自定义和正确拟合开放语料库内容,以提高其可重用性,将使AHS能够更有效地利用这些资源。本文提出了一种新的体系结构和服务,称为Slicepedia,它处理开放语料库资源,以便在AHS中重用。该服务的目的是通过正确地将开放语料库内容适配到各个系统的特定内容需求来改进开放语料库内容的重用。利用信息检索、内容碎片化、信息提取和语义网等互补技术,将原始资源转换为信息对象,称为切片。该服务已应用于一个真实的语言电子学习场景,以验证切片和重用的质量。还进行了一项涉及语言学习者的用户试验。证据清楚地表明,通过这种方法,AHS中开放语料库内容的重用得到了改善,而原始内容的质量下降最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slicepedia: providing customized reuse of open-web resources for adaptive hypermedia
A key advantage of Adaptive Hypermedia Systems (AHS) is their ability to re-sequence and reintegrate content to satisfy particular user needs. However, this can require large volumes of content, with appropriate granularities and suitable meta-data descriptions. This represents a major impediment to the mainstream adoption of Adaptive Hypermedia. Open Adaptive Hypermedia systems have addressed this challenge by leveraging open corpus content available on the World Wide Web. However, the full reuse potential of such content is yet to be leveraged. Open corpus content is today still mainly available as only one-size-fits-all document-level information objects. Automatically customizing and right-fitting open corpus content with the aim of improving its amenability to reuse would enable AHS to more effectively utilise these resources. This paper presents a novel architecture and service called Slicepedia, which processes open corpus resources for reuse within AHS. The aim of this service is to improve the reuse of open corpus content by right-fitting it to the specific content requirements of individual systems. Complementary techniques from Information Retrieval, Content Fragmentation, Information Extraction and Semantic Web are leveraged to convert the original resources into information objects called slices. The service has been applied in an authentic language elearning scenario to validate the quality of the slicing and reuse. A user trial, involving language learners, was also conducted. The evidence clearly shows that the reuse of open corpus content in AHS is improved by this approach, with minimal decrease in the quality of the original content harvested.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022 HT '21: 32nd ACM Conference on Hypertext and Social Media, Virtual Event, Ireland, 30 August 2021 - 2 September 2021 HT '20: 31st ACM Conference on Hypertext and Social Media, Virtual Event, USA, July 13-15, 2020 Detecting Changes in Suicide Content Manifested in Social Media Following Celebrity Suicides. QualityRank: assessing quality of wikipedia articles by mutually evaluating editors and texts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1