基于ct的COVID-19分类和深度学习的病灶分割新方法

H. M. Truong, H. T. Huynh
{"title":"基于ct的COVID-19分类和深度学习的病灶分割新方法","authors":"H. M. Truong, H. T. Huynh","doi":"10.1093/comjnl/bxac015","DOIUrl":null,"url":null,"abstract":"The coronavirus disease 2019 (COVID-19) pandemic has been a globally dangerous crisis that causes an increasingly high death rate. Applying machine learning to the computed-tomography (CT)-based COVID-19 diagnosis is essential and attracts the attention of the research community. This paper introduces an approach for simultaneously identifying COVID-19 disease and segmenting its manifestations on lung images. The proposed method is an asymmetric U-Net-like model improved with skip connections. The experiment was conducted on a light-weighted feature extractor called CRNet with a feature enhancement technique called atrous spatial pyramid pooling. Classifying between COVID-19 and non-COVID-19 cases recorded the highest mean scores of 97.1, 94.4, and 97.0% for accuracy, dice similarity coefficient (DSC) and F1 score, respectively. Alternatively, the respective highest mean scores of the classification between COVID-19 and community-acquired pneumonia were 99.89, 99.79, and 99.97%. The lesion segmentation performance was with the highest mean of 99.6 and 84.7% for, respectively, accuracy and DSC.","PeriodicalId":21872,"journal":{"name":"South Afr. Comput. J.","volume":"68 5 1","pages":"1366-1375"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Approach For CT-Based COVID-19 Classification and Lesion Segmentation Based On Deep Learning\",\"authors\":\"H. M. Truong, H. T. Huynh\",\"doi\":\"10.1093/comjnl/bxac015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The coronavirus disease 2019 (COVID-19) pandemic has been a globally dangerous crisis that causes an increasingly high death rate. Applying machine learning to the computed-tomography (CT)-based COVID-19 diagnosis is essential and attracts the attention of the research community. This paper introduces an approach for simultaneously identifying COVID-19 disease and segmenting its manifestations on lung images. The proposed method is an asymmetric U-Net-like model improved with skip connections. The experiment was conducted on a light-weighted feature extractor called CRNet with a feature enhancement technique called atrous spatial pyramid pooling. Classifying between COVID-19 and non-COVID-19 cases recorded the highest mean scores of 97.1, 94.4, and 97.0% for accuracy, dice similarity coefficient (DSC) and F1 score, respectively. Alternatively, the respective highest mean scores of the classification between COVID-19 and community-acquired pneumonia were 99.89, 99.79, and 99.97%. The lesion segmentation performance was with the highest mean of 99.6 and 84.7% for, respectively, accuracy and DSC.\",\"PeriodicalId\":21872,\"journal\":{\"name\":\"South Afr. Comput. J.\",\"volume\":\"68 5 1\",\"pages\":\"1366-1375\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South Afr. Comput. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/comjnl/bxac015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South Afr. Comput. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/comjnl/bxac015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病(COVID-19)大流行是一场全球危险的危机,导致越来越高的死亡率。将机器学习应用于基于计算机断层扫描(CT)的COVID-19诊断是必不可少的,并且引起了研究界的关注。本文介绍了一种同时识别COVID-19疾病并在肺部图像上分割其表现的方法。该方法是一种采用跳跃连接改进的非对称u - net模型。实验是在一种名为CRNet的轻量级特征提取器上进行的,该特征提取器采用了一种名为空间金字塔池的特征增强技术。对新冠肺炎和非新冠肺炎病例进行分类,准确率、DSC和F1得分分别为97.1、94.4和97.0%,平均得分最高。COVID-19与社区获得性肺炎的分类最高平均得分分别为99.89、99.79和99.97%。病灶分割的准确率和DSC均值最高,分别为99.6%和84.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Approach For CT-Based COVID-19 Classification and Lesion Segmentation Based On Deep Learning
The coronavirus disease 2019 (COVID-19) pandemic has been a globally dangerous crisis that causes an increasingly high death rate. Applying machine learning to the computed-tomography (CT)-based COVID-19 diagnosis is essential and attracts the attention of the research community. This paper introduces an approach for simultaneously identifying COVID-19 disease and segmenting its manifestations on lung images. The proposed method is an asymmetric U-Net-like model improved with skip connections. The experiment was conducted on a light-weighted feature extractor called CRNet with a feature enhancement technique called atrous spatial pyramid pooling. Classifying between COVID-19 and non-COVID-19 cases recorded the highest mean scores of 97.1, 94.4, and 97.0% for accuracy, dice similarity coefficient (DSC) and F1 score, respectively. Alternatively, the respective highest mean scores of the classification between COVID-19 and community-acquired pneumonia were 99.89, 99.79, and 99.97%. The lesion segmentation performance was with the highest mean of 99.6 and 84.7% for, respectively, accuracy and DSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Taylor Sun Flower Optimization-Based Compressive Sensing for Image Compression and Recovery Special Issue on Failed Approaches and Insightful Losses in Cryptology - Foreword Role of Machine Learning on Key Extraction for Data Privacy Preservation of Health Care Sectors in IoT Environment Incorrectly Generated RSA Keys: How I Learned To Stop Worrying And Recover Lost Plaintexts Smart Multimedia Compressor - Intelligent Algorithms for Text and Image Compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1