用新的大型联合数据集训练CNN并重新排序,提高人再识别精度

R. Bohush, S. Ihnatsyeva, S. Ablameyko
{"title":"用新的大型联合数据集训练CNN并重新排序,提高人再识别精度","authors":"R. Bohush, S. Ihnatsyeva, S. Ablameyko","doi":"10.22630/mgv.2022.31.1.5","DOIUrl":null,"url":null,"abstract":"The paper is aimed to improve person re-identification accuracy in distributed video surveillance systems based on constructing a large joint image dataset of people for training convolutional neural networks (CNN). For this aim, an analysis of existing datasets is provided. Then, a new large joint dataset for person re-identification task is constructed that includes the existing public datasets CUHK02, CUHK03, Market, Duke, MSMT17 and PolReID. Testing for re-identification is performed for such frequently cited CNNs as ResNet-50, DenseNet121 and PCB. Re-identification accuracy is evaluated by using the main metrics Rank, mAP and mINP. The use of the new large joint dataset makes it possible to improve Rank1 mAP, mINP on all test sets. Re-ranking is used to further increase the re-identification accuracy. Presented results confirm the effectiveness of the proposed approach.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Person re-identification accuracy improvement by training a CNN with the new large joint dataset and re-rank\",\"authors\":\"R. Bohush, S. Ihnatsyeva, S. Ablameyko\",\"doi\":\"10.22630/mgv.2022.31.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper is aimed to improve person re-identification accuracy in distributed video surveillance systems based on constructing a large joint image dataset of people for training convolutional neural networks (CNN). For this aim, an analysis of existing datasets is provided. Then, a new large joint dataset for person re-identification task is constructed that includes the existing public datasets CUHK02, CUHK03, Market, Duke, MSMT17 and PolReID. Testing for re-identification is performed for such frequently cited CNNs as ResNet-50, DenseNet121 and PCB. Re-identification accuracy is evaluated by using the main metrics Rank, mAP and mINP. The use of the new large joint dataset makes it possible to improve Rank1 mAP, mINP on all test sets. Re-ranking is used to further increase the re-identification accuracy. Presented results confirm the effectiveness of the proposed approach.\",\"PeriodicalId\":39750,\"journal\":{\"name\":\"Machine Graphics and Vision\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/mgv.2022.31.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2022.31.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在通过构建用于训练卷积神经网络(CNN)的大型联合图像数据集来提高分布式视频监控系统中人的再识别精度。为此,提供了对现有数据集的分析。然后,构建了一个包含现有公共数据集CUHK02、CUHK03、Market、Duke、MSMT17和PolReID的大型联合数据集,用于人员再识别任务。对诸如ResNet-50、DenseNet121和PCB等经常被引用的cnn进行了重新识别测试。利用Rank、mAP和mINP等主要指标对再识别精度进行评价。使用新的大型联合数据集可以提高所有测试集上的Rank1 mAP, mINP。重新排序是为了进一步提高重新识别的准确性。给出的结果证实了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Person re-identification accuracy improvement by training a CNN with the new large joint dataset and re-rank
The paper is aimed to improve person re-identification accuracy in distributed video surveillance systems based on constructing a large joint image dataset of people for training convolutional neural networks (CNN). For this aim, an analysis of existing datasets is provided. Then, a new large joint dataset for person re-identification task is constructed that includes the existing public datasets CUHK02, CUHK03, Market, Duke, MSMT17 and PolReID. Testing for re-identification is performed for such frequently cited CNNs as ResNet-50, DenseNet121 and PCB. Re-identification accuracy is evaluated by using the main metrics Rank, mAP and mINP. The use of the new large joint dataset makes it possible to improve Rank1 mAP, mINP on all test sets. Re-ranking is used to further increase the re-identification accuracy. Presented results confirm the effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Machine Graphics and Vision
Machine Graphics and Vision Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
0.40
自引率
0.00%
发文量
1
期刊介绍: Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling
期刊最新文献
Use of virtual reality to facilitate engineer training in the aerospace industry An efficient pedestrian attributes recognition system under challenging conditions Performance evaluation of Machine Learning models to predict heart attack Lung and colon cancer detection from CT images using Deep Learning Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1