{"title":"由最长边等分得到的三角剖分的性质","authors":"Francisco Perdomo, Ángel Plaza","doi":"10.2478/s11533-014-0448-4","DOIUrl":null,"url":null,"abstract":"The Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle of the initial angle. The novelty of the proofs is the use of an hyperbolic metric in a shape space for triangles.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"2 1","pages":"1796-1810"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Properties of triangulations obtained by the longest-edge bisection\",\"authors\":\"Francisco Perdomo, Ángel Plaza\",\"doi\":\"10.2478/s11533-014-0448-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle of the initial angle. The novelty of the proofs is the use of an hyperbolic metric in a shape space for triangles.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"2 1\",\"pages\":\"1796-1810\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-014-0448-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0448-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Properties of triangulations obtained by the longest-edge bisection
The Longest-Edge (LE) bisection of a triangle is obtained by joining the midpoint of its longest edge with the opposite vertex. Here two properties of the longest-edge bisection scheme for triangles are proved. For any triangle, the number of distinct triangles (up to similarity) generated by longest-edge bisection is finite. In addition, if LE-bisection is iteratively applied to an initial triangle, then minimum angle of the resulting triangles is greater or equal than a half of the minimum angle of the initial angle. The novelty of the proofs is the use of an hyperbolic metric in a shape space for triangles.