项目组合优化中超排序模型参数间接提取的超启发式方法

Nelson Rangel-Valdez, E. Fernández, L. Cruz-Reyes, Claudia Gómez-Santillán, Lucila Morales-Rodríguez
{"title":"项目组合优化中超排序模型参数间接提取的超启发式方法","authors":"Nelson Rangel-Valdez, E. Fernández, L. Cruz-Reyes, Claudia Gómez-Santillán, Lucila Morales-Rodríguez","doi":"10.3390/mol2net-04-06123","DOIUrl":null,"url":null,"abstract":"One of the main problems that face Multi-Objective Evolutionary Algorithms (MOEAs) when approximating the best compromise solutions is a proper a priori incorporation of the Decision Maker’s (DM) preferences. Particularly, when these methods rely on outranking approaches, they need eliciting several parameters. Given that his task is of great cognitive effort for a DM, it is performed indirectly through a battery of examples that (s)he provides previously and that reflex the desired preferences. So far, only metaheuristics have been used to transform such examples into parameters’ values of specific preference models. The present research propose an architecture for a hyperheuristic that integrates characterization and performance analysis into the elicitation process. It is expected that a good combination the metaheuristic could improve the quality of parameters estimated.","PeriodicalId":20475,"journal":{"name":"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hyperheuristics for indirect elicitation of outranking model’s parameters in Project Portfolio Optimization\",\"authors\":\"Nelson Rangel-Valdez, E. Fernández, L. Cruz-Reyes, Claudia Gómez-Santillán, Lucila Morales-Rodríguez\",\"doi\":\"10.3390/mol2net-04-06123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main problems that face Multi-Objective Evolutionary Algorithms (MOEAs) when approximating the best compromise solutions is a proper a priori incorporation of the Decision Maker’s (DM) preferences. Particularly, when these methods rely on outranking approaches, they need eliciting several parameters. Given that his task is of great cognitive effort for a DM, it is performed indirectly through a battery of examples that (s)he provides previously and that reflex the desired preferences. So far, only metaheuristics have been used to transform such examples into parameters’ values of specific preference models. The present research propose an architecture for a hyperheuristic that integrates characterization and performance analysis into the elicitation process. It is expected that a good combination the metaheuristic could improve the quality of parameters estimated.\",\"PeriodicalId\":20475,\"journal\":{\"name\":\"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mol2net-04-06123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MOL2NET 2018, International Conference on Multidisciplinary Sciences, 4th edition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mol2net-04-06123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多目标进化算法(moea)在逼近最佳折衷方案时面临的主要问题之一是决策者(DM)偏好的适当先验结合。特别是,当这些方法依赖于排名方法时,它们需要引出几个参数。考虑到他的任务对DM来说是很大的认知努力,它是通过他之前提供的一系列例子间接执行的,这些例子反映了期望的偏好。到目前为止,只有元启发式被用来将这些例子转化为特定偏好模型的参数值。本研究提出了一种超启发式架构,将表征和性能分析集成到启发过程中。期望将元启发式算法很好地结合起来,可以提高估计参数的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hyperheuristics for indirect elicitation of outranking model’s parameters in Project Portfolio Optimization
One of the main problems that face Multi-Objective Evolutionary Algorithms (MOEAs) when approximating the best compromise solutions is a proper a priori incorporation of the Decision Maker’s (DM) preferences. Particularly, when these methods rely on outranking approaches, they need eliciting several parameters. Given that his task is of great cognitive effort for a DM, it is performed indirectly through a battery of examples that (s)he provides previously and that reflex the desired preferences. So far, only metaheuristics have been used to transform such examples into parameters’ values of specific preference models. The present research propose an architecture for a hyperheuristic that integrates characterization and performance analysis into the elicitation process. It is expected that a good combination the metaheuristic could improve the quality of parameters estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PANELFIT-LAWSci-02 Workshop: H2020 Challenges in Law, Technology, Life, and Social Sciences Characterization and overexpression of a glucanase from a newly isolated B. subtilis strain MOL2NET: FROM MOLECULES TO NETWORKS (PROC. BOOK), ISBN: 978-3-03842-820-6, 2019, Vol. 4, 2985 pp. Analysis of chemical composition of Cissus incisa leaves by GC/MS Machine learning techniques and the identification of new potentially active compounds against Leishmania infantum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1