离散净-总截尾高斯模拟:澳大利亚东部Bowen盆地CSG非常规油藏的另一种建模方法

Simone Rattazzi, A. Hansen
{"title":"离散净-总截尾高斯模拟:澳大利亚东部Bowen盆地CSG非常规油藏的另一种建模方法","authors":"Simone Rattazzi, A. Hansen","doi":"10.2118/191904-MS","DOIUrl":null,"url":null,"abstract":"\n Building a representative static model for predicting and monitoring performance of coal seam gas fields presents several complex and unique challenges. The individual reservoirs possess very different coal architectures, often with highly complex seam splitting, amalgamating and structural deformation. The objective was to develop an alternative approach which honoured log and core data capturing both the lateral heterogeneity and the vertical signature of the Bowen Basin coals, Central Queensland.\n In some areas of the Bowen Basin, coals can be thick and laterally continuous; picking the top and base of each seam works well in small models with homogeneous coals. As seam geometries begin to increase in complexity and coals become more heterogeneous in nature with thinner seams in multiple packages, then a net-to-gross (NTG) approach is often more appropriate. Each method has its merits. The former approach describes the reservoir architecture but implies a certain degree of confidence in coal correlation; in a vast field with complex seam splitting and merging with abundant drilling data, it may not be a practical technique. The later method (NTG) disregards coal seam architecture and reservoir connectivity.\n The proposed workflow is designed to take advantage of both NTG characterization and facies modelling technique using a combined hybrid approach. The process is operating on a relatively coarse layered chronostratigraphic framework in which coal is captured as contiguous discrete-NTG \"facies\". The utilization of the Truncated Gaussian model ensures the contiguity of facies and mimics transitions between coals and carbonaceous mudstones (or other transitional interburdens). With the adoption of facies vertical proportion trends we are able to replicate a similar coal seam signature laterally away from the well bore. The definition of a categorical coal model allows the proper scaling of seams with different coal quality characteristics.\n With the successful geocellular model re-construction of two historical Coal Seam Gas (CSG) fields in the Bowen Basin, the discrete-NTG Truncated Gaussian Simulation approach has proven to be a valid alternative CSG modelling technique.","PeriodicalId":11182,"journal":{"name":"Day 3 Thu, October 25, 2018","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Net-to-Gross Truncated Gaussian Simulation: An Alternative Modelling Approach for CSG Unconventional Reservoirs, Bowen Basin, Eastern Australia\",\"authors\":\"Simone Rattazzi, A. Hansen\",\"doi\":\"10.2118/191904-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Building a representative static model for predicting and monitoring performance of coal seam gas fields presents several complex and unique challenges. The individual reservoirs possess very different coal architectures, often with highly complex seam splitting, amalgamating and structural deformation. The objective was to develop an alternative approach which honoured log and core data capturing both the lateral heterogeneity and the vertical signature of the Bowen Basin coals, Central Queensland.\\n In some areas of the Bowen Basin, coals can be thick and laterally continuous; picking the top and base of each seam works well in small models with homogeneous coals. As seam geometries begin to increase in complexity and coals become more heterogeneous in nature with thinner seams in multiple packages, then a net-to-gross (NTG) approach is often more appropriate. Each method has its merits. The former approach describes the reservoir architecture but implies a certain degree of confidence in coal correlation; in a vast field with complex seam splitting and merging with abundant drilling data, it may not be a practical technique. The later method (NTG) disregards coal seam architecture and reservoir connectivity.\\n The proposed workflow is designed to take advantage of both NTG characterization and facies modelling technique using a combined hybrid approach. The process is operating on a relatively coarse layered chronostratigraphic framework in which coal is captured as contiguous discrete-NTG \\\"facies\\\". The utilization of the Truncated Gaussian model ensures the contiguity of facies and mimics transitions between coals and carbonaceous mudstones (or other transitional interburdens). With the adoption of facies vertical proportion trends we are able to replicate a similar coal seam signature laterally away from the well bore. The definition of a categorical coal model allows the proper scaling of seams with different coal quality characteristics.\\n With the successful geocellular model re-construction of two historical Coal Seam Gas (CSG) fields in the Bowen Basin, the discrete-NTG Truncated Gaussian Simulation approach has proven to be a valid alternative CSG modelling technique.\",\"PeriodicalId\":11182,\"journal\":{\"name\":\"Day 3 Thu, October 25, 2018\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, October 25, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191904-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 25, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191904-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建立具有代表性的煤层气田动态预测与监测静态模型是一项复杂而独特的挑战。个别储层煤结构差异很大,往往具有高度复杂的煤层分裂、合并和构造变形。目标是开发一种替代方法,利用测井和岩心数据捕捉昆士兰州中部Bowen盆地煤的横向非均质性和垂直特征。在Bowen盆地的一些地区,煤可以很厚并且横向连续;在煤质均匀的小模型中,选取每个煤层的顶部和底部效果很好。随着煤层几何形状的复杂性开始增加,煤层在多个包层中变得更加不均匀,因此净比总(NTG)方法通常更合适。每种方法都有其优点。前一种方法描述了储层构型,但意味着对煤对比有一定程度的置信度;在广阔的油田,复杂的煤层分裂和合并,丰富的钻井数据,可能不是一个实用的技术。后一种方法(NTG)不考虑煤层构型和储层连通性。所提出的工作流程旨在利用结合混合方法的NTG表征和相建模技术。这个过程是在一个相对粗糙的层状年代地层格架上进行的,在这个格架中,煤被捕获为连续的离散的ntg“相”。截断高斯模型的使用确保了相的连续性,并模拟了煤与碳质泥岩(或其他过渡间质)之间的过渡。通过采用相垂向比例趋势,我们能够在远离井筒的横向上复制类似的煤层特征。煤的分类模型的定义允许对不同煤质特征的煤层进行适当的标度。通过对Bowen盆地两个历史煤层气田的地胞模型重建,离散- ntg截尾高斯模拟方法被证明是一种有效的煤层气模拟替代技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete Net-to-Gross Truncated Gaussian Simulation: An Alternative Modelling Approach for CSG Unconventional Reservoirs, Bowen Basin, Eastern Australia
Building a representative static model for predicting and monitoring performance of coal seam gas fields presents several complex and unique challenges. The individual reservoirs possess very different coal architectures, often with highly complex seam splitting, amalgamating and structural deformation. The objective was to develop an alternative approach which honoured log and core data capturing both the lateral heterogeneity and the vertical signature of the Bowen Basin coals, Central Queensland. In some areas of the Bowen Basin, coals can be thick and laterally continuous; picking the top and base of each seam works well in small models with homogeneous coals. As seam geometries begin to increase in complexity and coals become more heterogeneous in nature with thinner seams in multiple packages, then a net-to-gross (NTG) approach is often more appropriate. Each method has its merits. The former approach describes the reservoir architecture but implies a certain degree of confidence in coal correlation; in a vast field with complex seam splitting and merging with abundant drilling data, it may not be a practical technique. The later method (NTG) disregards coal seam architecture and reservoir connectivity. The proposed workflow is designed to take advantage of both NTG characterization and facies modelling technique using a combined hybrid approach. The process is operating on a relatively coarse layered chronostratigraphic framework in which coal is captured as contiguous discrete-NTG "facies". The utilization of the Truncated Gaussian model ensures the contiguity of facies and mimics transitions between coals and carbonaceous mudstones (or other transitional interburdens). With the adoption of facies vertical proportion trends we are able to replicate a similar coal seam signature laterally away from the well bore. The definition of a categorical coal model allows the proper scaling of seams with different coal quality characteristics. With the successful geocellular model re-construction of two historical Coal Seam Gas (CSG) fields in the Bowen Basin, the discrete-NTG Truncated Gaussian Simulation approach has proven to be a valid alternative CSG modelling technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discrete Net-to-Gross Truncated Gaussian Simulation: An Alternative Modelling Approach for CSG Unconventional Reservoirs, Bowen Basin, Eastern Australia Where the Laterals Go? A Feasible Way for the Trajectory Measurement of Radial Jet Drilling Wells Embracing Opportunities and Avoiding Pitfalls of Probabilistic Modelling in Field Development Planning Efficient Integration Method of Large-Scale Reservoir Compaction and Small-Scale Casing Stability Models for Oilfield Casing Failure Analysis Monitoring Water Flood Front Movement by Propagating High Frequency Pulses Through Subsurface Transmission Lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1