{"title":"荧光显微镜成像中的斑点检测方法综述","authors":"Matsilele Mabaso, D. Withey, Bhekisipho Twala","doi":"10.5566/IAS.1690","DOIUrl":null,"url":null,"abstract":"Fluorescence microscopy imaging has become one of the essential tools used by biologists to visualize and study intracellular particles within a cell. Studying these particles is a long-term research effort in the field of microscopy image analysis, consisting of discovering the relationship between the dynamics of particles and their functions. However, biologists are faced with challenges such as the counting and tracking of these intracellular particles. To overcome the issues faced by biologists, tools which can extract the location and motion of these particles are essential. One of the most important steps in these analyses is to accurately detect particle positions in an image, termed spot detection. The detection of spots in microscopy imaging is seen as a critical step for further quantitative analysis. However, the evaluation of these microscopic images is mainly conducted manually, with automated methods becoming popular. This work presents some advances in fluorescence microscopy image analysis, focusing on the detection methods needed for quantifying the location of these spots. We review several existing detection methods in microscopy imaging, along with existing synthetic benchmark datasets and evaluation metrics.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"468 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"SPOT DETECTION METHODS IN FLUORESCENCE MICROSCOPY IMAGING: A REVIEW\",\"authors\":\"Matsilele Mabaso, D. Withey, Bhekisipho Twala\",\"doi\":\"10.5566/IAS.1690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorescence microscopy imaging has become one of the essential tools used by biologists to visualize and study intracellular particles within a cell. Studying these particles is a long-term research effort in the field of microscopy image analysis, consisting of discovering the relationship between the dynamics of particles and their functions. However, biologists are faced with challenges such as the counting and tracking of these intracellular particles. To overcome the issues faced by biologists, tools which can extract the location and motion of these particles are essential. One of the most important steps in these analyses is to accurately detect particle positions in an image, termed spot detection. The detection of spots in microscopy imaging is seen as a critical step for further quantitative analysis. However, the evaluation of these microscopic images is mainly conducted manually, with automated methods becoming popular. This work presents some advances in fluorescence microscopy image analysis, focusing on the detection methods needed for quantifying the location of these spots. We review several existing detection methods in microscopy imaging, along with existing synthetic benchmark datasets and evaluation metrics.\",\"PeriodicalId\":49062,\"journal\":{\"name\":\"Image Analysis & Stereology\",\"volume\":\"468 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Image Analysis & Stereology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.5566/IAS.1690\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.1690","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
SPOT DETECTION METHODS IN FLUORESCENCE MICROSCOPY IMAGING: A REVIEW
Fluorescence microscopy imaging has become one of the essential tools used by biologists to visualize and study intracellular particles within a cell. Studying these particles is a long-term research effort in the field of microscopy image analysis, consisting of discovering the relationship between the dynamics of particles and their functions. However, biologists are faced with challenges such as the counting and tracking of these intracellular particles. To overcome the issues faced by biologists, tools which can extract the location and motion of these particles are essential. One of the most important steps in these analyses is to accurately detect particle positions in an image, termed spot detection. The detection of spots in microscopy imaging is seen as a critical step for further quantitative analysis. However, the evaluation of these microscopic images is mainly conducted manually, with automated methods becoming popular. This work presents some advances in fluorescence microscopy image analysis, focusing on the detection methods needed for quantifying the location of these spots. We review several existing detection methods in microscopy imaging, along with existing synthetic benchmark datasets and evaluation metrics.
期刊介绍:
Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.