F. Carlo, Xianghui Xiao, K. Fezzaa, Steve Wang, N. Schwarz, C. Jacobsen, N. Chawla, F. Fusseis
{"title":"基于同步加速器的三维x射线成像设备的数据密集型科学","authors":"F. Carlo, Xianghui Xiao, K. Fezzaa, Steve Wang, N. Schwarz, C. Jacobsen, N. Chawla, F. Fusseis","doi":"10.1109/ESCIENCE.2012.6404468","DOIUrl":null,"url":null,"abstract":"New developments in detector technology allow the acquisition of micrometer-resolution x-ray transmission images of specimens as large as a few millimeters at unprecedented frame rates. The high x-ray flux density generated by the Advanced Photon Source (APS) allows for detector exposure times ranging from hundreds of milliseconds to 150 picoseconds. The synchronization of the camera with the rotation stage allows a full 3D dataset to be acquired in less than one second. The micro and nano tomography systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. Here we will describe the computational challenges associated with the x-ray imaging systems at the APS and discuss our current data model and data analysis processes.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"9 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Data intensive science at synchrotron based 3D x-ray imaging facilities\",\"authors\":\"F. Carlo, Xianghui Xiao, K. Fezzaa, Steve Wang, N. Schwarz, C. Jacobsen, N. Chawla, F. Fusseis\",\"doi\":\"10.1109/ESCIENCE.2012.6404468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"New developments in detector technology allow the acquisition of micrometer-resolution x-ray transmission images of specimens as large as a few millimeters at unprecedented frame rates. The high x-ray flux density generated by the Advanced Photon Source (APS) allows for detector exposure times ranging from hundreds of milliseconds to 150 picoseconds. The synchronization of the camera with the rotation stage allows a full 3D dataset to be acquired in less than one second. The micro and nano tomography systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. Here we will describe the computational challenges associated with the x-ray imaging systems at the APS and discuss our current data model and data analysis processes.\",\"PeriodicalId\":6364,\"journal\":{\"name\":\"2012 IEEE 8th International Conference on E-Science\",\"volume\":\"9 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 8th International Conference on E-Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESCIENCE.2012.6404468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESCIENCE.2012.6404468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data intensive science at synchrotron based 3D x-ray imaging facilities
New developments in detector technology allow the acquisition of micrometer-resolution x-ray transmission images of specimens as large as a few millimeters at unprecedented frame rates. The high x-ray flux density generated by the Advanced Photon Source (APS) allows for detector exposure times ranging from hundreds of milliseconds to 150 picoseconds. The synchronization of the camera with the rotation stage allows a full 3D dataset to be acquired in less than one second. The micro and nano tomography systems available at the x-ray imaging beamlines of the APS are routinely used in material science and geoscience applications where high-resolution and fast 3D imaging are instrumental in extracting in situ four-dimensional dynamic information. Here we will describe the computational challenges associated with the x-ray imaging systems at the APS and discuss our current data model and data analysis processes.