G. Venditti, M. Temperini, P. Barone, J. Lorenzana, M. Gastiasoro
{"title":"kta3中各向异性Rashba耦合与极模","authors":"G. Venditti, M. Temperini, P. Barone, J. Lorenzana, M. Gastiasoro","doi":"10.1088/2515-7639/acb017","DOIUrl":null,"url":null,"abstract":"Motivated by the discovery of superconductivity in KTaO3-based heterostructures, we study a pairing mechanism based on spin-orbit assisted coupling between the conduction electrons and the ferroelectric (FE) modes present in the material. We use ab initio frozen-phonon computations to show a linear-in-momentum Rashba-like coupling with a strong angular dependence in momentum for the lower j=3/2 manifold, deviating from the conventional isotropic Rashba model. This implies the Rashba-like interaction with the polar modes has substantial L = 3 cubic harmonic corrections, which we quantify for each electronic band. The strong anisotropy of the Rashba interaction is captured by a microscopic toy model for the t2g electrons. We find its origin to be the angular dependence in electronic momentum imposed by the kinetic term on the degenerate j=3/2 manifold. A comparison between the toy model and ab initio results indicates that additional symmetry allowed terms beyond odd-parity spin-conserving inter-orbital hopping processes are needed to describe the Rashba-like polar interaction between the electrons and the soft FE mode.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"1 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Anisotropic Rashba coupling to polar modes in KTaO3\",\"authors\":\"G. Venditti, M. Temperini, P. Barone, J. Lorenzana, M. Gastiasoro\",\"doi\":\"10.1088/2515-7639/acb017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivated by the discovery of superconductivity in KTaO3-based heterostructures, we study a pairing mechanism based on spin-orbit assisted coupling between the conduction electrons and the ferroelectric (FE) modes present in the material. We use ab initio frozen-phonon computations to show a linear-in-momentum Rashba-like coupling with a strong angular dependence in momentum for the lower j=3/2 manifold, deviating from the conventional isotropic Rashba model. This implies the Rashba-like interaction with the polar modes has substantial L = 3 cubic harmonic corrections, which we quantify for each electronic band. The strong anisotropy of the Rashba interaction is captured by a microscopic toy model for the t2g electrons. We find its origin to be the angular dependence in electronic momentum imposed by the kinetic term on the degenerate j=3/2 manifold. A comparison between the toy model and ab initio results indicates that additional symmetry allowed terms beyond odd-parity spin-conserving inter-orbital hopping processes are needed to describe the Rashba-like polar interaction between the electrons and the soft FE mode.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/acb017\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acb017","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
Anisotropic Rashba coupling to polar modes in KTaO3
Motivated by the discovery of superconductivity in KTaO3-based heterostructures, we study a pairing mechanism based on spin-orbit assisted coupling between the conduction electrons and the ferroelectric (FE) modes present in the material. We use ab initio frozen-phonon computations to show a linear-in-momentum Rashba-like coupling with a strong angular dependence in momentum for the lower j=3/2 manifold, deviating from the conventional isotropic Rashba model. This implies the Rashba-like interaction with the polar modes has substantial L = 3 cubic harmonic corrections, which we quantify for each electronic band. The strong anisotropy of the Rashba interaction is captured by a microscopic toy model for the t2g electrons. We find its origin to be the angular dependence in electronic momentum imposed by the kinetic term on the degenerate j=3/2 manifold. A comparison between the toy model and ab initio results indicates that additional symmetry allowed terms beyond odd-parity spin-conserving inter-orbital hopping processes are needed to describe the Rashba-like polar interaction between the electrons and the soft FE mode.
期刊介绍:
This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.