利用无监督神经网络对生物力学模型进行MRI乳房分割

S. Said, M. Meyling, R. Huguenot, M. Horning, P. Clauser, N. Ruiter, P. Baltzer, T. Hopp
{"title":"利用无监督神经网络对生物力学模型进行MRI乳房分割","authors":"S. Said, M. Meyling, R. Huguenot, M. Horning, P. Clauser, N. Ruiter, P. Baltzer, T. Hopp","doi":"10.1117/12.2624245","DOIUrl":null,"url":null,"abstract":"In multimodal diagnosis for early breast cancer detection, spatial alignment by means of image registration is an important task. We develop patient-specific biomechanical models of the breast, for which one of the challenges is automatic segmentation for magnetic resonance imaging (MRI) of the breast. In this paper, we propose a novel method using unsupervised neural networks with pre-processing and post-processing to enable automatic breast MRI segmentation for three tissue types simultaneously: fatty, glandular, and muscular tissue. Pre-processing aims at facilitating training of the network. The architecture of neural network is a Kanezaki-net extended to 3D and consists of two sub-networks. Post-processing is enhancing the obtained segmentations by removing common errors. 25 datasets of T2 weighted MRI from the Medical University of Vienna have been evaluated qualitatively by two observers while eight datasets have been evaluated quantitatively based on a ground truth annotated by a medical practitioner. As a result of the qualitative evaluation, 22 out of 25 are usable for biomechanical models. Quantitatively, we achieved an average dice coefficient of 0.88 for fatty tissue, 0.5 for glandular tissue, and 0.86 for muscular tissue. The proposed method can serve as a robust method for automatic generation of biomechanical models.","PeriodicalId":92005,"journal":{"name":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","volume":"82 1","pages":"122860C - 122860C-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MRI breast segmentation using unsupervised neural networks for biomechanical models\",\"authors\":\"S. Said, M. Meyling, R. Huguenot, M. Horning, P. Clauser, N. Ruiter, P. Baltzer, T. Hopp\",\"doi\":\"10.1117/12.2624245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In multimodal diagnosis for early breast cancer detection, spatial alignment by means of image registration is an important task. We develop patient-specific biomechanical models of the breast, for which one of the challenges is automatic segmentation for magnetic resonance imaging (MRI) of the breast. In this paper, we propose a novel method using unsupervised neural networks with pre-processing and post-processing to enable automatic breast MRI segmentation for three tissue types simultaneously: fatty, glandular, and muscular tissue. Pre-processing aims at facilitating training of the network. The architecture of neural network is a Kanezaki-net extended to 3D and consists of two sub-networks. Post-processing is enhancing the obtained segmentations by removing common errors. 25 datasets of T2 weighted MRI from the Medical University of Vienna have been evaluated qualitatively by two observers while eight datasets have been evaluated quantitatively based on a ground truth annotated by a medical practitioner. As a result of the qualitative evaluation, 22 out of 25 are usable for biomechanical models. Quantitatively, we achieved an average dice coefficient of 0.88 for fatty tissue, 0.5 for glandular tissue, and 0.86 for muscular tissue. The proposed method can serve as a robust method for automatic generation of biomechanical models.\",\"PeriodicalId\":92005,\"journal\":{\"name\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"volume\":\"82 1\",\"pages\":\"122860C - 122860C-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2624245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Breast imaging : 11th International Workshop, IWDM 2012, Philadelphia, PA, USA, July 8-11, 2012 : proceedings. International Workshop on Breast Imaging (11th : 2012 : Philadelphia, Pa.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2624245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在早期乳腺癌的多模态诊断中,利用图像配准进行空间对齐是一项重要的工作。我们开发了患者特异性的乳房生物力学模型,其中一个挑战是乳房磁共振成像(MRI)的自动分割。在本文中,我们提出了一种使用无监督神经网络进行预处理和后处理的新方法,可以同时对三种组织类型(脂肪组织、腺体组织和肌肉组织)进行乳腺MRI自动分割。预处理的目的是为了便于网络的训练。神经网络的结构是扩展到三维的kanezaki网络,由两个子网络组成。后处理是通过去除常见错误来增强得到的分割。来自维也纳医科大学的25个T2加权MRI数据集已由两名观察员进行了定性评估,而8个数据集已根据由医生注释的基本事实进行了定量评估。定性评价的结果是,25个模型中有22个可用于生物力学模型。在数量上,我们获得了脂肪组织的平均骰子系数为0.88,腺体组织为0.5,肌肉组织为0.86。该方法可作为生物力学模型自动生成的鲁棒方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MRI breast segmentation using unsupervised neural networks for biomechanical models
In multimodal diagnosis for early breast cancer detection, spatial alignment by means of image registration is an important task. We develop patient-specific biomechanical models of the breast, for which one of the challenges is automatic segmentation for magnetic resonance imaging (MRI) of the breast. In this paper, we propose a novel method using unsupervised neural networks with pre-processing and post-processing to enable automatic breast MRI segmentation for three tissue types simultaneously: fatty, glandular, and muscular tissue. Pre-processing aims at facilitating training of the network. The architecture of neural network is a Kanezaki-net extended to 3D and consists of two sub-networks. Post-processing is enhancing the obtained segmentations by removing common errors. 25 datasets of T2 weighted MRI from the Medical University of Vienna have been evaluated qualitatively by two observers while eight datasets have been evaluated quantitatively based on a ground truth annotated by a medical practitioner. As a result of the qualitative evaluation, 22 out of 25 are usable for biomechanical models. Quantitatively, we achieved an average dice coefficient of 0.88 for fatty tissue, 0.5 for glandular tissue, and 0.86 for muscular tissue. The proposed method can serve as a robust method for automatic generation of biomechanical models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robustness of a U-net model for different image processing types in segmentation of the mammary gland region Lesion detection in contrast enhanced spectral mammography Correspondence between areas causing recall in breast cancer screening and artificial intelligence findings Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge Breast shape estimation and correction in CESM biopsy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1