J. Pronold , J. Jordan , B.J.N. Wylie , I. Kitayama , M. Diesmann , S. Kunkel
{"title":"通过冯诺依曼瓶颈路由大脑流量:通用计算机上尖峰神经网络仿真代码的高效缓存使用","authors":"J. Pronold , J. Jordan , B.J.N. Wylie , I. Kitayama , M. Diesmann , S. Kunkel","doi":"10.1016/j.parco.2022.102952","DOIUrl":null,"url":null,"abstract":"<div><p>Simulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed random graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. In distributed computing these targets are scattered across thousands of parallel processes. The spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can alleviate the von Neumann bottleneck of conventional computer architectures.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"113 ","pages":"Article 102952"},"PeriodicalIF":2.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167819122000461/pdfft?md5=b8e7064aa5b20b2508d68e7bff9b38e4&pid=1-s2.0-S0167819122000461-main.pdf","citationCount":"6","resultStr":"{\"title\":\"Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers\",\"authors\":\"J. Pronold , J. Jordan , B.J.N. Wylie , I. Kitayama , M. Diesmann , S. Kunkel\",\"doi\":\"10.1016/j.parco.2022.102952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Simulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed random graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. In distributed computing these targets are scattered across thousands of parallel processes. The spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can alleviate the von Neumann bottleneck of conventional computer architectures.</p></div>\",\"PeriodicalId\":54642,\"journal\":{\"name\":\"Parallel Computing\",\"volume\":\"113 \",\"pages\":\"Article 102952\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167819122000461/pdfft?md5=b8e7064aa5b20b2508d68e7bff9b38e4&pid=1-s2.0-S0167819122000461-main.pdf\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parallel Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167819122000461\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819122000461","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Routing brain traffic through the von Neumann bottleneck: Efficient cache usage in spiking neural network simulation code on general purpose computers
Simulation is a third pillar next to experiment and theory in the study of complex dynamic systems such as biological neural networks. Contemporary brain-scale networks correspond to directed random graphs of a few million nodes, each with an in-degree and out-degree of several thousands of edges, where nodes and edges correspond to the fundamental biological units, neurons and synapses, respectively. The activity in neuronal networks is also sparse. Each neuron occasionally transmits a brief signal, called spike, via its outgoing synapses to the corresponding target neurons. In distributed computing these targets are scattered across thousands of parallel processes. The spatial and temporal sparsity represents an inherent bottleneck for simulations on conventional computers: irregular memory-access patterns cause poor cache utilization. Using an established neuronal network simulation code as a reference implementation, we investigate how common techniques to recover cache performance such as software-induced prefetching and software pipelining can benefit a real-world application. The algorithmic changes reduce simulation time by up to 50%. The study exemplifies that many-core systems assigned with an intrinsically parallel computational problem can alleviate the von Neumann bottleneck of conventional computer architectures.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications