一种新的复值神经网络激活函数:复Swish函数

M. Celebi, M. Ceylan
{"title":"一种新的复值神经网络激活函数:复Swish函数","authors":"M. Celebi, M. Ceylan","doi":"10.36287/setsci.4.6.050","DOIUrl":null,"url":null,"abstract":"Complex-valued artificial neural network (CVANN) has been developed to process data with complex numbers directly. Weights, threshold, inputs and outputs are all complex numbers in the CVANN. The convergence of the CVANN back propagation algorithm depends on some factors such as selection of appropriate activation function, threshold values, initial weights and normalization of data. The most important of these factors is the selection of the appropriate activation function. The selection of activation function determines the convergence and general formation characteristics of the complex back propagation algorithm. In this study, the swish activation function discovered by Google researchers Prajit Ramachandra, Barret Zoph and Quoc V. Le is discussed in the complex domain. Swish activation function, which gives good results in real plane, has been studied in the complex plane. We have compared the performance of swish activation functions on the complex XOR and symmetry problems with other known activation functions. The simulations’ results show that the proposed network using swish activation function, gives the best results when compared to other networks using the traditional complex logarithmic sigmoid and tangent sigmoid activation functions.","PeriodicalId":6817,"journal":{"name":"4th International Symposium on Innovative Approaches in Engineering and Natural Sciences Proceedings","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The New Activation Function for Complex Valued Neural Networks: Complex Swish Function\",\"authors\":\"M. Celebi, M. Ceylan\",\"doi\":\"10.36287/setsci.4.6.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex-valued artificial neural network (CVANN) has been developed to process data with complex numbers directly. Weights, threshold, inputs and outputs are all complex numbers in the CVANN. The convergence of the CVANN back propagation algorithm depends on some factors such as selection of appropriate activation function, threshold values, initial weights and normalization of data. The most important of these factors is the selection of the appropriate activation function. The selection of activation function determines the convergence and general formation characteristics of the complex back propagation algorithm. In this study, the swish activation function discovered by Google researchers Prajit Ramachandra, Barret Zoph and Quoc V. Le is discussed in the complex domain. Swish activation function, which gives good results in real plane, has been studied in the complex plane. We have compared the performance of swish activation functions on the complex XOR and symmetry problems with other known activation functions. The simulations’ results show that the proposed network using swish activation function, gives the best results when compared to other networks using the traditional complex logarithmic sigmoid and tangent sigmoid activation functions.\",\"PeriodicalId\":6817,\"journal\":{\"name\":\"4th International Symposium on Innovative Approaches in Engineering and Natural Sciences Proceedings\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th International Symposium on Innovative Approaches in Engineering and Natural Sciences Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36287/setsci.4.6.050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th International Symposium on Innovative Approaches in Engineering and Natural Sciences Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36287/setsci.4.6.050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

复值人工神经网络(CVANN)是一种直接处理复数数据的方法。权值、阈值、输入和输出在CVANN中都是复数。CVANN反向传播算法的收敛性取决于激活函数的选择、阈值、初始权值和数据的归一化等因素。这些因素中最重要的是选择合适的激活函数。激活函数的选择决定了复反向传播算法的收敛性和一般编队特性。在这项研究中,由谷歌研究员Prajit Ramachandra, Barret Zoph和Quoc V. Le发现的swish激活函数在复杂域进行了讨论。在复平面上对Swish激活函数进行了研究,该函数在实平面上得到了很好的结果。我们比较了swish激活函数与其他已知激活函数在复杂异或和对称问题上的性能。仿真结果表明,与传统的复对数sigmoid和正切sigmoid激活函数的网络相比,采用swish激活函数的网络具有最好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The New Activation Function for Complex Valued Neural Networks: Complex Swish Function
Complex-valued artificial neural network (CVANN) has been developed to process data with complex numbers directly. Weights, threshold, inputs and outputs are all complex numbers in the CVANN. The convergence of the CVANN back propagation algorithm depends on some factors such as selection of appropriate activation function, threshold values, initial weights and normalization of data. The most important of these factors is the selection of the appropriate activation function. The selection of activation function determines the convergence and general formation characteristics of the complex back propagation algorithm. In this study, the swish activation function discovered by Google researchers Prajit Ramachandra, Barret Zoph and Quoc V. Le is discussed in the complex domain. Swish activation function, which gives good results in real plane, has been studied in the complex plane. We have compared the performance of swish activation functions on the complex XOR and symmetry problems with other known activation functions. The simulations’ results show that the proposed network using swish activation function, gives the best results when compared to other networks using the traditional complex logarithmic sigmoid and tangent sigmoid activation functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Giresun İline ait Coğrafi Bilgi Sistemleri Destekli Heyelan Duyarlılık Haritalarının Üretilmesi Determination Of Sediment Yield By Suspended Solids Karbon Nanotüp Nanoakışkanının Geriye Dönük Adım Akışında Isı Transferi ve Akış Karakteristiğinin Araştırılması Pedestrian and Vehicles Detection with ResNet in Aerial Images ISO/IEC 27037, ISO/IEC 27041, ISO/IEC 27042 ve ISO/IEC 27043 Standartlarına Göre Sayısal Kanıtlar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1