{"title":"基于鲁棒判别分析和类稀疏性的特征提取与选择","authors":"A. Khoder, F. Dornaika","doi":"10.1109/ICPR48806.2021.9412683","DOIUrl":null,"url":null,"abstract":"The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multiclass classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Interclass sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.","PeriodicalId":6783,"journal":{"name":"2020 25th International Conference on Pattern Recognition (ICPR)","volume":"16 1","pages":"7258-7264"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Feature Extraction and Selection via Robust Discriminant Analysis and Class Sparsity\",\"authors\":\"A. Khoder, F. Dornaika\",\"doi\":\"10.1109/ICPR48806.2021.9412683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multiclass classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Interclass sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.\",\"PeriodicalId\":6783,\"journal\":{\"name\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"volume\":\"16 1\",\"pages\":\"7258-7264\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th International Conference on Pattern Recognition (ICPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR48806.2021.9412683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th International Conference on Pattern Recognition (ICPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR48806.2021.9412683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Extraction and Selection via Robust Discriminant Analysis and Class Sparsity
The main goal of discriminant embedding is to extract features that can be compact and informative representations of the original set of features. This paper introduces a hybrid scheme for linear feature extraction for supervised multiclass classification. We introduce a unifying criterion that is able to retain the advantages of robust sparse LDA and Interclass sparsity. Thus, the estimated transformation includes two types of discrimination which are the inter-class sparsity and robust Linear Discriminant Analysis with feature selection. In order to optimize the proposed objective function, we deploy an iterative alternating minimization scheme for estimating the linear transformation and the orthogonal matrix. The introduced scheme is generic in the sense that it can be used for combining and tuning many other linear embedding methods. In the lights of the experiments conducted on six image datasets including faces, objects, and digits, the proposed scheme was able to outperform competing methods in most of the cases.