{"title":"模态算子扩展框架下的直觉命题演算。第二部分","authors":"Takao Inoué","doi":"10.2478/forma-2022-0001","DOIUrl":null,"url":null,"abstract":"Summary This paper is a continuation of Inoué [5]. As already mentioned in the paper, a number of intuitionistic provable formulas are given with a Hilbert-style proof. For that, we make use of a family of intuitionistic deduction theorems, which are also presented in this paper by means of Mizar system [2], [1]. Our axiom system of intuitionistic propositional logic IPC is based on the propositional subsystem of H1-IQC in Troelstra and van Dalen [6, p. 68]. We also owe Heyting [4] and van Dalen [7]. Our treatment of a set-theoretic intuitionistic deduction theorem is due to Agata Darmochwał’s Mizar article “Calculus of Quantifiers. Deduction Theorem” [3].","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intuitionistic Propositional Calculus in the Extended Framework with Modal Operator. Part II\",\"authors\":\"Takao Inoué\",\"doi\":\"10.2478/forma-2022-0001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary This paper is a continuation of Inoué [5]. As already mentioned in the paper, a number of intuitionistic provable formulas are given with a Hilbert-style proof. For that, we make use of a family of intuitionistic deduction theorems, which are also presented in this paper by means of Mizar system [2], [1]. Our axiom system of intuitionistic propositional logic IPC is based on the propositional subsystem of H1-IQC in Troelstra and van Dalen [6, p. 68]. We also owe Heyting [4] and van Dalen [7]. Our treatment of a set-theoretic intuitionistic deduction theorem is due to Agata Darmochwał’s Mizar article “Calculus of Quantifiers. Deduction Theorem” [3].\",\"PeriodicalId\":42667,\"journal\":{\"name\":\"Formalized Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formalized Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/forma-2022-0001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2022-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
摘要
本文是inou[5]的延续。正如文中已经提到的,我们用hilbert式证明给出了一些直观可证明的公式。为此,我们利用了一系列直觉演绎定理,这些定理在本文中也通过Mizar系统[2],[1]给出。我们的直觉命题逻辑IPC公理系统是基于Troelstra和van Dalen [6, p. 68]的H1-IQC命题子系统。我们还欠何亭[4]和范达伦[7]。我们对集合论直觉演绎定理的处理是由于Agata darmochwaov的Mizar文章“量词演算”。演绎定理”[3]。
Intuitionistic Propositional Calculus in the Extended Framework with Modal Operator. Part II
Summary This paper is a continuation of Inoué [5]. As already mentioned in the paper, a number of intuitionistic provable formulas are given with a Hilbert-style proof. For that, we make use of a family of intuitionistic deduction theorems, which are also presented in this paper by means of Mizar system [2], [1]. Our axiom system of intuitionistic propositional logic IPC is based on the propositional subsystem of H1-IQC in Troelstra and van Dalen [6, p. 68]. We also owe Heyting [4] and van Dalen [7]. Our treatment of a set-theoretic intuitionistic deduction theorem is due to Agata Darmochwał’s Mizar article “Calculus of Quantifiers. Deduction Theorem” [3].
期刊介绍:
Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.