{"title":"黎曼流形上的缠绕高斯过程回归","authors":"Anton Mallasto, Aasa Feragen","doi":"10.1109/CVPR.2018.00585","DOIUrl":null,"url":null,"abstract":"Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates. However, it is limited to data in vector spaces. In fields such as shape analysis and diffusion tensor imaging, the data often lies on a manifold, making GP regression nonviable, as the resulting predictive distribution does not live in the correct geometric space. We tackle the problem by defining wrapped Gaussian processes (WGPs) on Riemannian manifolds, using the probabilistic setting to generalize GP regression to the context of manifold-valued targets. The method is validated empirically on diffusion weighted imaging (DWI) data, directional data on the sphere and in the Kendall shape space, endorsing WGP regression as an efficient and flexible tool for manifold-valued regression.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"359 1","pages":"5580-5588"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Wrapped Gaussian Process Regression on Riemannian Manifolds\",\"authors\":\"Anton Mallasto, Aasa Feragen\",\"doi\":\"10.1109/CVPR.2018.00585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates. However, it is limited to data in vector spaces. In fields such as shape analysis and diffusion tensor imaging, the data often lies on a manifold, making GP regression nonviable, as the resulting predictive distribution does not live in the correct geometric space. We tackle the problem by defining wrapped Gaussian processes (WGPs) on Riemannian manifolds, using the probabilistic setting to generalize GP regression to the context of manifold-valued targets. The method is validated empirically on diffusion weighted imaging (DWI) data, directional data on the sphere and in the Kendall shape space, endorsing WGP regression as an efficient and flexible tool for manifold-valued regression.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"359 1\",\"pages\":\"5580-5588\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wrapped Gaussian Process Regression on Riemannian Manifolds
Gaussian process (GP) regression is a powerful tool in non-parametric regression providing uncertainty estimates. However, it is limited to data in vector spaces. In fields such as shape analysis and diffusion tensor imaging, the data often lies on a manifold, making GP regression nonviable, as the resulting predictive distribution does not live in the correct geometric space. We tackle the problem by defining wrapped Gaussian processes (WGPs) on Riemannian manifolds, using the probabilistic setting to generalize GP regression to the context of manifold-valued targets. The method is validated empirically on diffusion weighted imaging (DWI) data, directional data on the sphere and in the Kendall shape space, endorsing WGP regression as an efficient and flexible tool for manifold-valued regression.