PPAR-γ:主要的代谢性核受体

S. Onteru, Dheer Singh
{"title":"PPAR-γ:主要的代谢性核受体","authors":"S. Onteru, Dheer Singh","doi":"10.18519/JER/2013/V17/75785","DOIUrl":null,"url":null,"abstract":"Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of metabolic nuclear receptors called PPARs, which regulate all facets of the fatty acid metabolism including transport, synthesis, storage, mobilization, activation and oxidation of fatty acids. Hence, this receptor could be a drug target for metabolic syndrome-related noncommunicable diseases (NCD) like obesity, diabetes, cardiovascular disease and cancers. The PPAR-γ gene has different size and transcriptional variants in different species. The major transcriptional variants (PPAR-γ1 and PPAR-γ2) encode proteins with 475/477 and 505 amino acids, respectively. Transcriptional regulation of PPAR-γ is mainly due to combinatorial activity of several transcription factors, chromatin remodelers and non-coding RNA at its promoters and enhancers during energy-surplus state. The miR-130a/b could be a major miRNA regulating PPAR-γ transcripts at post-transcriptional levels. Its protein has a large ligand-binding pocket to bind a wide range of endogenous and exogenous natural (e.g., dietary lipids) and synthetic ligands (TZDs). Along with its obligate partner RXR, and other co-activators, it exerts its action by DNA binding at DR1 and DR2 repeats and also by chromatin remodeling at the promoters and enhancers of its target genes. It has important physiological roles in adipocyte differentiation, inflammation, insulin sensitivity and reproduction. By enhancing the transcription of genes related to lipid uptake, triglyceride synthesis and glucose metabolism, PPAR-γ sequesters the plasma-free fatty acids into adipose tissue and, thereby, it plays a greater role of promoting systemic insulin sensitivity. Hence, it is a key target for anti-diabetic drugs like TZDs. Due to many side effects for classical PPAR-γ-targeting drugs like TZDs, selective PPAR-γ modulators are gaining a great lot of attention. Future studies need to be carried out to understand its transcriptional and post-transcriptional regulation in non-adipose tissues adopting advanced \"omics\" approaches. Such studies will be helpful in designing selective PPAR-γ modulators with limited side effects.","PeriodicalId":15664,"journal":{"name":"Journal of Endocrinology and Reproduction","volume":"360 1","pages":"1-18"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PPAR-γ: A Master Metabolic Nuclear Receptor\",\"authors\":\"S. Onteru, Dheer Singh\",\"doi\":\"10.18519/JER/2013/V17/75785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of metabolic nuclear receptors called PPARs, which regulate all facets of the fatty acid metabolism including transport, synthesis, storage, mobilization, activation and oxidation of fatty acids. Hence, this receptor could be a drug target for metabolic syndrome-related noncommunicable diseases (NCD) like obesity, diabetes, cardiovascular disease and cancers. The PPAR-γ gene has different size and transcriptional variants in different species. The major transcriptional variants (PPAR-γ1 and PPAR-γ2) encode proteins with 475/477 and 505 amino acids, respectively. Transcriptional regulation of PPAR-γ is mainly due to combinatorial activity of several transcription factors, chromatin remodelers and non-coding RNA at its promoters and enhancers during energy-surplus state. The miR-130a/b could be a major miRNA regulating PPAR-γ transcripts at post-transcriptional levels. Its protein has a large ligand-binding pocket to bind a wide range of endogenous and exogenous natural (e.g., dietary lipids) and synthetic ligands (TZDs). Along with its obligate partner RXR, and other co-activators, it exerts its action by DNA binding at DR1 and DR2 repeats and also by chromatin remodeling at the promoters and enhancers of its target genes. It has important physiological roles in adipocyte differentiation, inflammation, insulin sensitivity and reproduction. By enhancing the transcription of genes related to lipid uptake, triglyceride synthesis and glucose metabolism, PPAR-γ sequesters the plasma-free fatty acids into adipose tissue and, thereby, it plays a greater role of promoting systemic insulin sensitivity. Hence, it is a key target for anti-diabetic drugs like TZDs. Due to many side effects for classical PPAR-γ-targeting drugs like TZDs, selective PPAR-γ modulators are gaining a great lot of attention. Future studies need to be carried out to understand its transcriptional and post-transcriptional regulation in non-adipose tissues adopting advanced \\\"omics\\\" approaches. Such studies will be helpful in designing selective PPAR-γ modulators with limited side effects.\",\"PeriodicalId\":15664,\"journal\":{\"name\":\"Journal of Endocrinology and Reproduction\",\"volume\":\"360 1\",\"pages\":\"1-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Endocrinology and Reproduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18519/JER/2013/V17/75785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology and Reproduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18519/JER/2013/V17/75785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

过氧化物酶体增殖体活化受体-γ (PPAR-γ)是代谢核受体PPAR的一员,它调节脂肪酸的转运、合成、储存、动员、活化和氧化等脂肪酸代谢的各个方面。因此,这种受体可能成为代谢综合征相关非传染性疾病(NCD)的药物靶点,如肥胖、糖尿病、心血管疾病和癌症。PPAR-γ基因在不同物种中具有不同的大小和转录变异。主要的转录变异体PPAR-γ1和PPAR-γ2分别编码475/477和505个氨基酸。PPAR-γ的转录调控主要是由于能量过剩状态下启动子和增强子上的几种转录因子、染色质重塑子和非编码RNA的组合活性。miR-130a/b可能是在转录后水平调控PPAR-γ转录的主要miRNA。其蛋白质具有大的配体结合袋,可结合广泛的内源性和外源性天然(如膳食脂质)和合成配体(TZDs)。与它的专一伴侣RXR和其他共激活因子一起,它通过在DR1和DR2重复上的DNA结合以及在其靶基因的启动子和增强子上的染色质重塑来发挥作用。它在脂肪细胞分化、炎症、胰岛素敏感性和生殖等方面具有重要的生理作用。PPAR-γ通过增强脂质摄取、甘油三酯合成和葡萄糖代谢相关基因的转录,将血浆游离脂肪酸隔离到脂肪组织中,从而发挥更大的促进全身胰岛素敏感性的作用。因此,它是TZDs等抗糖尿病药物的关键靶点。由于传统的PPAR-γ靶向药物如TZDs的许多副作用,选择性PPAR-γ调节剂受到了广泛的关注。未来的研究需要采用先进的“组学”方法来了解其在非脂肪组织中的转录和转录后调控。这些研究将有助于设计具有有限副作用的选择性PPAR-γ调节剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PPAR-γ: A Master Metabolic Nuclear Receptor
Peroxisome proliferator-activated receptor-γ (PPAR-γ) is a member of metabolic nuclear receptors called PPARs, which regulate all facets of the fatty acid metabolism including transport, synthesis, storage, mobilization, activation and oxidation of fatty acids. Hence, this receptor could be a drug target for metabolic syndrome-related noncommunicable diseases (NCD) like obesity, diabetes, cardiovascular disease and cancers. The PPAR-γ gene has different size and transcriptional variants in different species. The major transcriptional variants (PPAR-γ1 and PPAR-γ2) encode proteins with 475/477 and 505 amino acids, respectively. Transcriptional regulation of PPAR-γ is mainly due to combinatorial activity of several transcription factors, chromatin remodelers and non-coding RNA at its promoters and enhancers during energy-surplus state. The miR-130a/b could be a major miRNA regulating PPAR-γ transcripts at post-transcriptional levels. Its protein has a large ligand-binding pocket to bind a wide range of endogenous and exogenous natural (e.g., dietary lipids) and synthetic ligands (TZDs). Along with its obligate partner RXR, and other co-activators, it exerts its action by DNA binding at DR1 and DR2 repeats and also by chromatin remodeling at the promoters and enhancers of its target genes. It has important physiological roles in adipocyte differentiation, inflammation, insulin sensitivity and reproduction. By enhancing the transcription of genes related to lipid uptake, triglyceride synthesis and glucose metabolism, PPAR-γ sequesters the plasma-free fatty acids into adipose tissue and, thereby, it plays a greater role of promoting systemic insulin sensitivity. Hence, it is a key target for anti-diabetic drugs like TZDs. Due to many side effects for classical PPAR-γ-targeting drugs like TZDs, selective PPAR-γ modulators are gaining a great lot of attention. Future studies need to be carried out to understand its transcriptional and post-transcriptional regulation in non-adipose tissues adopting advanced "omics" approaches. Such studies will be helpful in designing selective PPAR-γ modulators with limited side effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Protein-, L-Tryptophan-, Carbohydrate-, Oil-Rich Diets on Growth Performance, Levels of Melatonin, Oxidative Stress, Antioxidative Agents, and Vital Digestive Enzymes in the Gut of Juvenile Carp (Catla catla) Adipose Tissue Dysfunction in PCOS An Update on the Genetics of Polycystic Ovary Syndrome Evaluating the Relative Efficacy of Synthetic and Natural Drugs in Endometriosis Adopting Molecular Modelling Approach Elucidating the Impact of Secretome Derived from Mesenchymal Stem Cell and Uterine Epithelial Cells During <i>In Vitro</i> Blastocyst Production in Buffalo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1