跑步机:通过精确负载测试和统计推断确定尾部延迟的来源

Yunqi Zhang, David Meisner, Jason Mars, Lingjia Tang
{"title":"跑步机:通过精确负载测试和统计推断确定尾部延迟的来源","authors":"Yunqi Zhang, David Meisner, Jason Mars, Lingjia Tang","doi":"10.1145/3007787.3001186","DOIUrl":null,"url":null,"abstract":"Managing tail latency of requests has become one of the primary challenges for large-scale Internet services. Data centers are quickly evolving and service operators frequently desire to make changes to the deployed software and production hardware configurations. Such changes demand a confident understanding of the impact on one's service, in particular its effect on tail latency (e.g., 95th-or 99th-percentile response latency of the service). Evaluating the impact on the tail is challenging because of its inherent variability. Existing tools and methodologies for measuring these effects suffer from a number of deficiencies including poor load tester design, statistically inaccurate aggregation, and improper attribution of effects. As shown in the paper, these pitfalls can often result in misleading conclusions. In this paper, we develop a methodology for statistically rigorous performance evaluation and performance factor attribution for server workloads. First, we find that careful design of the server load tester can ensure high quality performance evaluation, and empirically demonstrate the inaccuracy of load testers in previous work. Learning from the design flaws in prior work, we design and develop a modular load tester platform, Treadmill, that overcomes pitfalls of existing tools. Next, utilizing Treadmill, we construct measurement and analysis procedures that can properly attribute performance factors. We rely on statistically-sound performance evaluation and quantile regression, extending it to accommodate the idiosyncrasies of server systems. Finally, we use our augmented methodology to evaluate the impact of common server hardware features with Facebook production workloads on production hardware. We decompose the effects of these features on request tail latency and demonstrate that our evaluation methodology provides superior results, particularly in capturing complicated and counter-intuitive performance behaviors. By tuning the hardware features as suggested by the attribution, we reduce the 99th-percentile latency by 43% and its variance by 93%.","PeriodicalId":6634,"journal":{"name":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","volume":"369 1","pages":"456-468"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"86","resultStr":"{\"title\":\"Treadmill: Attributing the Source of Tail Latency through Precise Load Testing and Statistical Inference\",\"authors\":\"Yunqi Zhang, David Meisner, Jason Mars, Lingjia Tang\",\"doi\":\"10.1145/3007787.3001186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Managing tail latency of requests has become one of the primary challenges for large-scale Internet services. Data centers are quickly evolving and service operators frequently desire to make changes to the deployed software and production hardware configurations. Such changes demand a confident understanding of the impact on one's service, in particular its effect on tail latency (e.g., 95th-or 99th-percentile response latency of the service). Evaluating the impact on the tail is challenging because of its inherent variability. Existing tools and methodologies for measuring these effects suffer from a number of deficiencies including poor load tester design, statistically inaccurate aggregation, and improper attribution of effects. As shown in the paper, these pitfalls can often result in misleading conclusions. In this paper, we develop a methodology for statistically rigorous performance evaluation and performance factor attribution for server workloads. First, we find that careful design of the server load tester can ensure high quality performance evaluation, and empirically demonstrate the inaccuracy of load testers in previous work. Learning from the design flaws in prior work, we design and develop a modular load tester platform, Treadmill, that overcomes pitfalls of existing tools. Next, utilizing Treadmill, we construct measurement and analysis procedures that can properly attribute performance factors. We rely on statistically-sound performance evaluation and quantile regression, extending it to accommodate the idiosyncrasies of server systems. Finally, we use our augmented methodology to evaluate the impact of common server hardware features with Facebook production workloads on production hardware. We decompose the effects of these features on request tail latency and demonstrate that our evaluation methodology provides superior results, particularly in capturing complicated and counter-intuitive performance behaviors. By tuning the hardware features as suggested by the attribution, we reduce the 99th-percentile latency by 43% and its variance by 93%.\",\"PeriodicalId\":6634,\"journal\":{\"name\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"volume\":\"369 1\",\"pages\":\"456-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"86\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3007787.3001186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3007787.3001186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86

摘要

管理请求的尾部延迟已经成为大规模Internet服务的主要挑战之一。数据中心正在快速发展,服务运营商经常希望对部署的软件和生产硬件配置进行更改。这种变化要求对服务的影响有自信的理解,特别是对尾部延迟的影响(例如,服务的95或99百分位响应延迟)。由于其固有的可变性,评估对尾部的影响是具有挑战性的。用于测量这些影响的现有工具和方法存在许多缺陷,包括糟糕的负载测试仪设计、统计不准确的聚合和不适当的影响归因。正如本文所示,这些陷阱往往会导致误导性的结论。在本文中,我们开发了一种方法,用于统计严格的性能评估和服务器工作负载的性能因素归因。首先,我们发现精心设计的服务器负载测试仪可以保证高质量的性能评估,并实证证明了以往工作中负载测试仪的不准确性。从之前工作的设计缺陷中学习,我们设计并开发了一个模块化负载测试平台,跑步机,克服了现有工具的缺陷。其次,利用跑步机,我们构建测量和分析程序,可以适当地归因于性能因素。我们依赖于统计可靠的性能评估和分位数回归,并对其进行扩展以适应服务器系统的特性。最后,我们使用我们的增强方法来评估带有Facebook生产工作负载的通用服务器硬件特性对生产硬件的影响。我们分解了这些特征对请求尾部延迟的影响,并证明我们的评估方法提供了优越的结果,特别是在捕获复杂和反直觉的性能行为方面。通过根据属性调整硬件特性,我们将第99百分位延迟减少了43%,其方差减少了93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Treadmill: Attributing the Source of Tail Latency through Precise Load Testing and Statistical Inference
Managing tail latency of requests has become one of the primary challenges for large-scale Internet services. Data centers are quickly evolving and service operators frequently desire to make changes to the deployed software and production hardware configurations. Such changes demand a confident understanding of the impact on one's service, in particular its effect on tail latency (e.g., 95th-or 99th-percentile response latency of the service). Evaluating the impact on the tail is challenging because of its inherent variability. Existing tools and methodologies for measuring these effects suffer from a number of deficiencies including poor load tester design, statistically inaccurate aggregation, and improper attribution of effects. As shown in the paper, these pitfalls can often result in misleading conclusions. In this paper, we develop a methodology for statistically rigorous performance evaluation and performance factor attribution for server workloads. First, we find that careful design of the server load tester can ensure high quality performance evaluation, and empirically demonstrate the inaccuracy of load testers in previous work. Learning from the design flaws in prior work, we design and develop a modular load tester platform, Treadmill, that overcomes pitfalls of existing tools. Next, utilizing Treadmill, we construct measurement and analysis procedures that can properly attribute performance factors. We rely on statistically-sound performance evaluation and quantile regression, extending it to accommodate the idiosyncrasies of server systems. Finally, we use our augmented methodology to evaluate the impact of common server hardware features with Facebook production workloads on production hardware. We decompose the effects of these features on request tail latency and demonstrate that our evaluation methodology provides superior results, particularly in capturing complicated and counter-intuitive performance behaviors. By tuning the hardware features as suggested by the attribution, we reduce the 99th-percentile latency by 43% and its variance by 93%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RelaxFault Memory Repair Boosting Access Parallelism to PCM-Based Main Memory Bit-Plane Compression: Transforming Data for Better Compression in Many-Core Architectures Transparent Offloading and Mapping (TOM): Enabling Programmer-Transparent Near-Data Processing in GPU Systems Energy Efficient Architecture for Graph Analytics Accelerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1