{"title":"欧几里得坐标和黎曼坐标中的逆时偏移","authors":"César-Augusto Arias Chica, Luis-Fernando Duque-Gómez, Juan-Guillermo Paniagua-Castrillón","doi":"10.29047/01225383.157","DOIUrl":null,"url":null,"abstract":"Reverse time migration in zones with rugged topography is a method that presents some challenging issues. We present an analysis of reverse time migration in transformed domains, in particular for a technique that goes from an Euclidian to a Riemannian scenario, as suggested by some authors in previous literature. Computational results show that there is not significant improvement in the final image when the Riemannian approach is used as compared with images obtained with an Euclidean metric.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"185 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reverse Time Migration in Euclidean and Riemannian coordinates\",\"authors\":\"César-Augusto Arias Chica, Luis-Fernando Duque-Gómez, Juan-Guillermo Paniagua-Castrillón\",\"doi\":\"10.29047/01225383.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reverse time migration in zones with rugged topography is a method that presents some challenging issues. We present an analysis of reverse time migration in transformed domains, in particular for a technique that goes from an Euclidian to a Riemannian scenario, as suggested by some authors in previous literature. Computational results show that there is not significant improvement in the final image when the Riemannian approach is used as compared with images obtained with an Euclidean metric.\",\"PeriodicalId\":10745,\"journal\":{\"name\":\"CT&F - Ciencia, Tecnología y Futuro\",\"volume\":\"185 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CT&F - Ciencia, Tecnología y Futuro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29047/01225383.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reverse Time Migration in Euclidean and Riemannian coordinates
Reverse time migration in zones with rugged topography is a method that presents some challenging issues. We present an analysis of reverse time migration in transformed domains, in particular for a technique that goes from an Euclidian to a Riemannian scenario, as suggested by some authors in previous literature. Computational results show that there is not significant improvement in the final image when the Riemannian approach is used as compared with images obtained with an Euclidean metric.