模拟超级传播者在COVID-19传播动力学中的潜在作用

J. Mushanyu, W. Chukwu, F. Nyabadza, G. Muchatibaya
{"title":"模拟超级传播者在COVID-19传播动力学中的潜在作用","authors":"J. Mushanyu, W. Chukwu, F. Nyabadza, G. Muchatibaya","doi":"10.1101/2021.08.30.21262341","DOIUrl":null,"url":null,"abstract":"Superspreading phenomenon has been observed in many infectious diseases and contributes significantly to public health burden in many countries. Superspreading events have recently been reported in the transmission of the COVID-19 pandemic. The present study uses a set of nine ordinary differential equations to investigate the impact of superspreading on COVID-19 dynamics. The model developed in this study addresses the heterogeineity in infectiousness by taking into account two forms of transmission rate functions for superspreaders based on clinical (infectivity level) and social or environmental (contact level). The basic reproduction number has been derived and the contribution of each infectious compartment towards the generation of new COVID-19 cases is ascertained. Data fitting was performed and parameter values were estimated within plausible ranges. Numerical simulations performed suggest that control measures that decrease the effective contact radius and increase the transmission rate exponent will be greatly beneficial in the control of COVID-19 in the presence of superspreading phenomen","PeriodicalId":13553,"journal":{"name":"Int. J. Math. Model. Numer. Optimisation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Modelling the potential role of super spreaders on COVID-19 transmission dynamics\",\"authors\":\"J. Mushanyu, W. Chukwu, F. Nyabadza, G. Muchatibaya\",\"doi\":\"10.1101/2021.08.30.21262341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superspreading phenomenon has been observed in many infectious diseases and contributes significantly to public health burden in many countries. Superspreading events have recently been reported in the transmission of the COVID-19 pandemic. The present study uses a set of nine ordinary differential equations to investigate the impact of superspreading on COVID-19 dynamics. The model developed in this study addresses the heterogeineity in infectiousness by taking into account two forms of transmission rate functions for superspreaders based on clinical (infectivity level) and social or environmental (contact level). The basic reproduction number has been derived and the contribution of each infectious compartment towards the generation of new COVID-19 cases is ascertained. Data fitting was performed and parameter values were estimated within plausible ranges. Numerical simulations performed suggest that control measures that decrease the effective contact radius and increase the transmission rate exponent will be greatly beneficial in the control of COVID-19 in the presence of superspreading phenomen\",\"PeriodicalId\":13553,\"journal\":{\"name\":\"Int. J. Math. Model. Numer. Optimisation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Math. Model. Numer. Optimisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2021.08.30.21262341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Math. Model. Numer. Optimisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2021.08.30.21262341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在许多国家,许多传染病都出现了超传播现象,严重增加了公共卫生负担。最近报告了COVID-19大流行传播中的超级传播事件。本研究使用一组9个常微分方程来研究超传播对COVID-19动态的影响。本研究开发的模型通过考虑基于临床(传染性水平)和社会或环境(接触水平)的超传播者的两种形式的传播率函数,解决了传染性的异质性。导出了基本复制数,并确定了每个感染室对新病例产生的贡献。进行数据拟合,并在合理范围内估计参数值。数值模拟结果表明,在超传播现象存在的情况下,减小有效接触半径、提高传播速率指数的防控措施将大大有利于防控
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling the potential role of super spreaders on COVID-19 transmission dynamics
Superspreading phenomenon has been observed in many infectious diseases and contributes significantly to public health burden in many countries. Superspreading events have recently been reported in the transmission of the COVID-19 pandemic. The present study uses a set of nine ordinary differential equations to investigate the impact of superspreading on COVID-19 dynamics. The model developed in this study addresses the heterogeineity in infectiousness by taking into account two forms of transmission rate functions for superspreaders based on clinical (infectivity level) and social or environmental (contact level). The basic reproduction number has been derived and the contribution of each infectious compartment towards the generation of new COVID-19 cases is ascertained. Data fitting was performed and parameter values were estimated within plausible ranges. Numerical simulations performed suggest that control measures that decrease the effective contact radius and increase the transmission rate exponent will be greatly beneficial in the control of COVID-19 in the presence of superspreading phenomen
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis and simulation of SIR model for COVID-19 spreading with the effect of offline learning and vaccination: a case study of Indonesia An investigation on MX/G/1 queuing model of interrupted services in the manufacturing of edible cutlery process Construction of optimum strata boundaries using dynamic programming with product estimator under super population model Multi-level multi-objective linear fractional programming problem: a solution approach Two reduced non-smooth Newton's methods for discretised state constrained optimal control problem governed by advection-diffusion equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1