Zhinan Cheng, Xi Li, Beilei Sun, Ce Gao, Jiachen Song
{"title":"自动基于帧率的游戏DVFS","authors":"Zhinan Cheng, Xi Li, Beilei Sun, Ce Gao, Jiachen Song","doi":"10.1109/ASAP.2015.7245726","DOIUrl":null,"url":null,"abstract":"The rapid development of mobile games highlights the power consumption problem in the mobile platform. Most of the power saving techniques use the prediction-based dynamic voltage frequency scaling (DVFS) scheme. However, the prediction could be inaccurate resulting from the frequent interactions of user when playing games. We have observed that frame rate is near-linear to CPU frequency, but there is a bottleneck, frame rate will not increase as CPU frequency increases when CPU frequency reaches this threshold. Moreover, previous research has shown that utilizing the information of game state can reduce the influence of game interactive characterization to DVFS policy. We explore a method to automatically detect the game state. We propose the Automatic Frame Rate-Based DVFS policy, which can learn the threshold of frame rate online and utilize the information of game state and frame rate to scale the frequency without prediction. Our evaluation result shows that, compared with the prediction-based Android default Interactive DVFS policy, our policy saves more power in all the testing games. Up to 15.2% more power can be saved by Automatic Frame Rate-Based DVFS policy.","PeriodicalId":6642,"journal":{"name":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","volume":"393 1","pages":"158-159"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automatic frame rate-based DVFS of game\",\"authors\":\"Zhinan Cheng, Xi Li, Beilei Sun, Ce Gao, Jiachen Song\",\"doi\":\"10.1109/ASAP.2015.7245726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid development of mobile games highlights the power consumption problem in the mobile platform. Most of the power saving techniques use the prediction-based dynamic voltage frequency scaling (DVFS) scheme. However, the prediction could be inaccurate resulting from the frequent interactions of user when playing games. We have observed that frame rate is near-linear to CPU frequency, but there is a bottleneck, frame rate will not increase as CPU frequency increases when CPU frequency reaches this threshold. Moreover, previous research has shown that utilizing the information of game state can reduce the influence of game interactive characterization to DVFS policy. We explore a method to automatically detect the game state. We propose the Automatic Frame Rate-Based DVFS policy, which can learn the threshold of frame rate online and utilize the information of game state and frame rate to scale the frequency without prediction. Our evaluation result shows that, compared with the prediction-based Android default Interactive DVFS policy, our policy saves more power in all the testing games. Up to 15.2% more power can be saved by Automatic Frame Rate-Based DVFS policy.\",\"PeriodicalId\":6642,\"journal\":{\"name\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"volume\":\"393 1\",\"pages\":\"158-159\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASAP.2015.7245726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 26th International Conference on Application-specific Systems, Architectures and Processors (ASAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAP.2015.7245726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The rapid development of mobile games highlights the power consumption problem in the mobile platform. Most of the power saving techniques use the prediction-based dynamic voltage frequency scaling (DVFS) scheme. However, the prediction could be inaccurate resulting from the frequent interactions of user when playing games. We have observed that frame rate is near-linear to CPU frequency, but there is a bottleneck, frame rate will not increase as CPU frequency increases when CPU frequency reaches this threshold. Moreover, previous research has shown that utilizing the information of game state can reduce the influence of game interactive characterization to DVFS policy. We explore a method to automatically detect the game state. We propose the Automatic Frame Rate-Based DVFS policy, which can learn the threshold of frame rate online and utilize the information of game state and frame rate to scale the frequency without prediction. Our evaluation result shows that, compared with the prediction-based Android default Interactive DVFS policy, our policy saves more power in all the testing games. Up to 15.2% more power can be saved by Automatic Frame Rate-Based DVFS policy.