未知含水层参数下的地下水污染源识别问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-10-07 DOI:10.1080/15275922.2021.1976317
Ying Zhao, Jiuhui Li, Wenxi Lu, Fan Yang
{"title":"未知含水层参数下的地下水污染源识别问题","authors":"Ying Zhao, Jiuhui Li, Wenxi Lu, Fan Yang","doi":"10.1080/15275922.2021.1976317","DOIUrl":null,"url":null,"abstract":"Abstract High-cost remediation of groundwater pollution makes it important to obtain exact information about the source. This is quite difficult to achieve in naturally ill-posed inverse problems of this kind. If the aquifer parameters are also unknown, the problem becomes even more challenging. To address this difficulty, we propose the alternating direction genetic algorithm (ADGA) approach, together with modification of the order of magnitude of the decision variables, to increase the accuracy of the results and computational efficiency. Seven scenarios were designed to test the accuracy of the proposed approach in aquifer with different properties, number of pollution sources, parameters and measurement errors. The results show that combining the ADGA approach with modification of the order of magnitude of the decision variables for identifying both groundwater pollution source and aquifer parameters significantly increases the accuracy of estimated results. The NE value for the estimated results decreased from 9.81% to 58.44% for different cases, and computation time is about half decreased. In addition, the approach is applicable in situations where concentrations of observational data with measurement error, and for multiple source locations and non-uniform media.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Groundwater pollution source identification problems with unknown aquifer parameters by ADGA approach\",\"authors\":\"Ying Zhao, Jiuhui Li, Wenxi Lu, Fan Yang\",\"doi\":\"10.1080/15275922.2021.1976317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract High-cost remediation of groundwater pollution makes it important to obtain exact information about the source. This is quite difficult to achieve in naturally ill-posed inverse problems of this kind. If the aquifer parameters are also unknown, the problem becomes even more challenging. To address this difficulty, we propose the alternating direction genetic algorithm (ADGA) approach, together with modification of the order of magnitude of the decision variables, to increase the accuracy of the results and computational efficiency. Seven scenarios were designed to test the accuracy of the proposed approach in aquifer with different properties, number of pollution sources, parameters and measurement errors. The results show that combining the ADGA approach with modification of the order of magnitude of the decision variables for identifying both groundwater pollution source and aquifer parameters significantly increases the accuracy of estimated results. The NE value for the estimated results decreased from 9.81% to 58.44% for different cases, and computation time is about half decreased. In addition, the approach is applicable in situations where concentrations of observational data with measurement error, and for multiple source locations and non-uniform media.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15275922.2021.1976317\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15275922.2021.1976317","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

摘要地下水污染的高成本修复使得获取准确的污染源信息变得非常重要。这在这类自然不适定逆问题中是很难做到的。如果含水层参数也是未知的,问题就变得更具挑战性。为了解决这一困难,我们提出了交替方向遗传算法(ADGA)方法,并修改决策变量的数量级,以提高结果的准确性和计算效率。设计了7个场景,在不同性质、不同污染源数量、不同参数和测量误差的含水层中测试该方法的准确性。结果表明,将ADGA方法与决策变量数量级的修正相结合,对地下水污染源和含水层参数进行识别,可显著提高估算结果的准确性。在不同情况下,估计结果的NE值从9.81%下降到58.44%,计算时间减少了一半左右。此外,该方法适用于观测数据浓度存在测量误差的情况,以及多源位置和非均匀介质的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Groundwater pollution source identification problems with unknown aquifer parameters by ADGA approach
Abstract High-cost remediation of groundwater pollution makes it important to obtain exact information about the source. This is quite difficult to achieve in naturally ill-posed inverse problems of this kind. If the aquifer parameters are also unknown, the problem becomes even more challenging. To address this difficulty, we propose the alternating direction genetic algorithm (ADGA) approach, together with modification of the order of magnitude of the decision variables, to increase the accuracy of the results and computational efficiency. Seven scenarios were designed to test the accuracy of the proposed approach in aquifer with different properties, number of pollution sources, parameters and measurement errors. The results show that combining the ADGA approach with modification of the order of magnitude of the decision variables for identifying both groundwater pollution source and aquifer parameters significantly increases the accuracy of estimated results. The NE value for the estimated results decreased from 9.81% to 58.44% for different cases, and computation time is about half decreased. In addition, the approach is applicable in situations where concentrations of observational data with measurement error, and for multiple source locations and non-uniform media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Mentorship in academic musculoskeletal radiology: perspectives from a junior faculty member. Underlying synovial sarcoma undiagnosed for more than 20 years in a patient with regional pain: a case report. Sacrococcygeal chordoma with spontaneous regression due to a large hemorrhagic component. Associations of cumulative voriconazole dose, treatment duration, and alkaline phosphatase with voriconazole-induced periostitis. Can the presence of SLAP-5 lesions be predicted by using the critical shoulder angle in traumatic anterior shoulder instability?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1