N. Garba, M. Saleh, A. T. Ramli, M. Sanusi, N. A. Abu Hanifah
{"title":"地面伽玛辐射剂量预测统计模型的发展","authors":"N. Garba, M. Saleh, A. T. Ramli, M. Sanusi, N. A. Abu Hanifah","doi":"10.1080/15275922.2021.1976316","DOIUrl":null,"url":null,"abstract":"Abstract Natural environmental radioactivity aroused mainly from primordial radionuclides such as 40K and 238U and 232Th decay series, and have been present in varying concentrations within the earth and in the tissue of every living being. Natural radioactivity can be found everywhere; in the soil, public water supplies, oil, and the atmosphere and it poses a measurable exposure to human beings. The present study developed a statistical model that can be used to predict the Terrestrial Gamma Radiation Dose rates (TGRD) based on soil types and geological formations irrespective of the environment. About 295 TGRD measurements were taken using a micro-Roentgen survey meter (model 19) manufactured by Ludlum, from different locations within the study area. Statistical Package for Social Sciences (SPSS) was utilized in establishing the relationships between TGRD with underlying geological formations and soil types as well as in the development of the model. The developed model was tested by predicting the TGRD value over different combinations of soil types and geological formations, and it was found to fit in well with more than 80% degree of accuracy which is within the acceptable limit. The developed model in this study, may help in establishing the background radioactivity levels in a terrestrial environment that can be used to evaluate any changes that may arise as a result of any release due to both natural and or human activities in a certain area.","PeriodicalId":11895,"journal":{"name":"Environmental Forensics","volume":"136 1","pages":"130 - 138"},"PeriodicalIF":1.5000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Development of statistical model for predicting terrestrial gamma radiation dose\",\"authors\":\"N. Garba, M. Saleh, A. T. Ramli, M. Sanusi, N. A. Abu Hanifah\",\"doi\":\"10.1080/15275922.2021.1976316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Natural environmental radioactivity aroused mainly from primordial radionuclides such as 40K and 238U and 232Th decay series, and have been present in varying concentrations within the earth and in the tissue of every living being. Natural radioactivity can be found everywhere; in the soil, public water supplies, oil, and the atmosphere and it poses a measurable exposure to human beings. The present study developed a statistical model that can be used to predict the Terrestrial Gamma Radiation Dose rates (TGRD) based on soil types and geological formations irrespective of the environment. About 295 TGRD measurements were taken using a micro-Roentgen survey meter (model 19) manufactured by Ludlum, from different locations within the study area. Statistical Package for Social Sciences (SPSS) was utilized in establishing the relationships between TGRD with underlying geological formations and soil types as well as in the development of the model. The developed model was tested by predicting the TGRD value over different combinations of soil types and geological formations, and it was found to fit in well with more than 80% degree of accuracy which is within the acceptable limit. The developed model in this study, may help in establishing the background radioactivity levels in a terrestrial environment that can be used to evaluate any changes that may arise as a result of any release due to both natural and or human activities in a certain area.\",\"PeriodicalId\":11895,\"journal\":{\"name\":\"Environmental Forensics\",\"volume\":\"136 1\",\"pages\":\"130 - 138\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Forensics\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15275922.2021.1976316\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Forensics","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15275922.2021.1976316","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Development of statistical model for predicting terrestrial gamma radiation dose
Abstract Natural environmental radioactivity aroused mainly from primordial radionuclides such as 40K and 238U and 232Th decay series, and have been present in varying concentrations within the earth and in the tissue of every living being. Natural radioactivity can be found everywhere; in the soil, public water supplies, oil, and the atmosphere and it poses a measurable exposure to human beings. The present study developed a statistical model that can be used to predict the Terrestrial Gamma Radiation Dose rates (TGRD) based on soil types and geological formations irrespective of the environment. About 295 TGRD measurements were taken using a micro-Roentgen survey meter (model 19) manufactured by Ludlum, from different locations within the study area. Statistical Package for Social Sciences (SPSS) was utilized in establishing the relationships between TGRD with underlying geological formations and soil types as well as in the development of the model. The developed model was tested by predicting the TGRD value over different combinations of soil types and geological formations, and it was found to fit in well with more than 80% degree of accuracy which is within the acceptable limit. The developed model in this study, may help in establishing the background radioactivity levels in a terrestrial environment that can be used to evaluate any changes that may arise as a result of any release due to both natural and or human activities in a certain area.
期刊介绍:
Environmental Forensics provides a forum for scientific investigations that address environment contamination, its sources, and the historical reconstruction of its release into the environment. The context for investigations that form the published papers in the journal are often subjects to regulatory or legal proceedings, public scrutiny, and debate. In all contexts, rigorous scientific underpinnings guide the subject investigations.
Specifically, the journal is an international, quarterly, peer-reviewed publication offering scientific studies that explore or are relevant to the source, age, fate, transport, as well as human health and ecological effects of environmental contamination. Journal subject matter encompasses all aspects of contamination mentioned above within the environmental media of air, water, soil, sediments and biota. Data evaluation and analysis approaches are highlighted as well including multivariate statistical methods. Journal focus is on scientific and technical information, data, and critical analysis in the following areas:
-Contaminant Fingerprinting for source identification and/or age-dating, including (but not limited to) chemical, isotopic, chiral, mineralogical/microscopy techniques, DNA and tree-ring fingerprinting
-Specific Evaluative Techniques for source identification and/or age-dating including (but not limited to) historical document and aerial photography review, signature chemicals, atmospheric tracers and markets forensics, background concentration evaluations.
-Statistical Evaluation, Contaminant Modeling and Data Visualization
-Vapor Intrusion including delineating the source and background values of indoor air contamination
-Integrated Case Studies, employing environmental fate techniques
-Legal Considerations, including strategic considerations for environmental fate in litigation and arbitration, and regulatory statutes and actions