利用化石和进化-发展对节肢动物分段进化的综合理解

A. Chipman, G. Edgecombe
{"title":"利用化石和进化-发展对节肢动物分段进化的综合理解","authors":"A. Chipman, G. Edgecombe","doi":"10.1098/rspb.2019.1881","DOIUrl":null,"url":null,"abstract":"Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.","PeriodicalId":20609,"journal":{"name":"Proceedings of the Royal Society B","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo\",\"authors\":\"A. Chipman, G. Edgecombe\",\"doi\":\"10.1098/rspb.2019.1881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.\",\"PeriodicalId\":20609,\"journal\":{\"name\":\"Proceedings of the Royal Society B\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1098/rspb.2019.1881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspb.2019.1881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

分割是节肢动物身体规划的基础。通过整合进化发育生物学(evo-devo)、寒武纪化石(可以在节肢动物茎群中逐步获得节段特征)以及基于基因组规模数据集将化石整合到现有节肢动物系统发育框架中,从而改变了对节肢动物进化步骤的理解。进化-devo和古生物学都对分割的进化做出了新的预测,这些预测为其他互补的数据源提供了可测试的假设。化石支持这样的假设:节肢动物起源于正面附属物,然后被吸收到其他节段,以及节肢动物茎群的内胚层中肠的分割。从发育过程中获得的见解,例如与不同身体区域的不同节段生成模式相关的甲甲化,以及头部前部节段的独特模式,与在特殊保存的化石个体发育过程中甲甲化模式的古生物学证据相辅相成。化石和发育资料共同为茎类节肢动物的短头及其形成和保留机制提供了证据。未来的突破有望从系统发育框架内发育创新的分子特征的识别,以及从对后期发育阶段的关注,以确定片段前体中不同系统重复单位的分化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Still air resistance during walking and running Functional plasticity of the swim bladder as an acoustic organ for communication in a vocal fish Millennial processes of population decline, range contraction and near extinction of the European bison Variation in personality shaped by evolutionary history, genotype and developmental plasticity in response to feeding modalities in the Arctic charr Magnetic fields, cancer and circadian rhythms: hypotheses on the relevance of intermittence and cycling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1