Muhammad Abdulhadi, Hani Mohd Said, Ahmad Uzair Zubbir, Evelyn Ling, M. Nasir, Imran Anoar, Abdul Rahman Abdul Rahim, Rohani Elias, Paul Sanchez, Rizam Sharif, Zamri Abdul Ghapor, Nurhanim Ismail, Yoong Hau Kew
{"title":"成熟油田浅层劣质气藏经济高效开发","authors":"Muhammad Abdulhadi, Hani Mohd Said, Ahmad Uzair Zubbir, Evelyn Ling, M. Nasir, Imran Anoar, Abdul Rahman Abdul Rahim, Rohani Elias, Paul Sanchez, Rizam Sharif, Zamri Abdul Ghapor, Nurhanim Ismail, Yoong Hau Kew","doi":"10.2118/206315-ms","DOIUrl":null,"url":null,"abstract":"The Cement Packer approach has been successfully implemented to pursue and monetize minor gas reservoirs of poorer quality. Due to its critical role in power supply to meet the nation's needs, license to operate gas fields oftentimes come with contractual obligations to deliver a certain threshold of gas capacity. The cement packer method is a cheaper alternative to workovers that enables operators to build gas capacity by monetizing minor gas reservoirs at lower cost. Group 1 reservoirs are the shallowest hydrocarbon bearing sand with poorer reservoir quality and relatively thin reservoirs. The behind-casing-opportunities in Minor Group-1 reservoirs previously required a relatively costly pull-tubing rig workover to monetize the reservoir. Opportunities in two wells were optimized from pull –tubing rig workovers to a non-rig program by implementing Cement Packer applications. The tubing was punched to create tubing-casing communication and cement was subsequently pumped through the tubing and into the casing. The hardened cement then acted as a barrier to satisfy operating guidelines. The reservoir was then additionally perforated, flow tested and successfully monetized at a lower cost. Tubing and casing integrity tests prior to well entry demonstrated good tubing and casing integrity. This is critical to ensure that cement will only flow into the casing where the tubing was punched. Once the cement hardened, pressure test from the tubing and from the casing indicated that the cement has effectively isolated both tubulars. Subsequent Cement Bond Log and Ultrasonic Imaging Tool showed fair to good cement above the target perforation depth. These data supported the fact that the cement packer was solid and the reservoir was ready for additional perforation. Taking into account the reservoir quality, it was decided to perforate the reservoir twice with the biggest gun available to ensure the lowest skin possible. Post perforation, there was a sharp increase in the tubing pressure indicating pressure influx from the reservoir. Despite that, casing pressure remained low, confirming no communication and thus the success of the cement packer.The well was later able to unload naturally due to its high reservoir pressure, confirming the producibility of the reservoirs and unlocking similar opportunities in other wells. Additionally, the cement packer approach delivered tremendous cost savings between $6 – 8 mil per well. Besides confirming the reservoirs' producibility,the success also unlocked additional shallow gas behind casing opportunities in the area.This method will now be the first-choice option to monetize any hydrocarbon resources in reservoirs located above the top packer.","PeriodicalId":10965,"journal":{"name":"Day 3 Thu, September 23, 2021","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cost-Effective Development of Shallow and Poorer Quality Gas Reservoir in Mature Field\",\"authors\":\"Muhammad Abdulhadi, Hani Mohd Said, Ahmad Uzair Zubbir, Evelyn Ling, M. Nasir, Imran Anoar, Abdul Rahman Abdul Rahim, Rohani Elias, Paul Sanchez, Rizam Sharif, Zamri Abdul Ghapor, Nurhanim Ismail, Yoong Hau Kew\",\"doi\":\"10.2118/206315-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Cement Packer approach has been successfully implemented to pursue and monetize minor gas reservoirs of poorer quality. Due to its critical role in power supply to meet the nation's needs, license to operate gas fields oftentimes come with contractual obligations to deliver a certain threshold of gas capacity. The cement packer method is a cheaper alternative to workovers that enables operators to build gas capacity by monetizing minor gas reservoirs at lower cost. Group 1 reservoirs are the shallowest hydrocarbon bearing sand with poorer reservoir quality and relatively thin reservoirs. The behind-casing-opportunities in Minor Group-1 reservoirs previously required a relatively costly pull-tubing rig workover to monetize the reservoir. Opportunities in two wells were optimized from pull –tubing rig workovers to a non-rig program by implementing Cement Packer applications. The tubing was punched to create tubing-casing communication and cement was subsequently pumped through the tubing and into the casing. The hardened cement then acted as a barrier to satisfy operating guidelines. The reservoir was then additionally perforated, flow tested and successfully monetized at a lower cost. Tubing and casing integrity tests prior to well entry demonstrated good tubing and casing integrity. This is critical to ensure that cement will only flow into the casing where the tubing was punched. Once the cement hardened, pressure test from the tubing and from the casing indicated that the cement has effectively isolated both tubulars. Subsequent Cement Bond Log and Ultrasonic Imaging Tool showed fair to good cement above the target perforation depth. These data supported the fact that the cement packer was solid and the reservoir was ready for additional perforation. Taking into account the reservoir quality, it was decided to perforate the reservoir twice with the biggest gun available to ensure the lowest skin possible. Post perforation, there was a sharp increase in the tubing pressure indicating pressure influx from the reservoir. Despite that, casing pressure remained low, confirming no communication and thus the success of the cement packer.The well was later able to unload naturally due to its high reservoir pressure, confirming the producibility of the reservoirs and unlocking similar opportunities in other wells. Additionally, the cement packer approach delivered tremendous cost savings between $6 – 8 mil per well. Besides confirming the reservoirs' producibility,the success also unlocked additional shallow gas behind casing opportunities in the area.This method will now be the first-choice option to monetize any hydrocarbon resources in reservoirs located above the top packer.\",\"PeriodicalId\":10965,\"journal\":{\"name\":\"Day 3 Thu, September 23, 2021\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Thu, September 23, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/206315-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, September 23, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/206315-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cost-Effective Development of Shallow and Poorer Quality Gas Reservoir in Mature Field
The Cement Packer approach has been successfully implemented to pursue and monetize minor gas reservoirs of poorer quality. Due to its critical role in power supply to meet the nation's needs, license to operate gas fields oftentimes come with contractual obligations to deliver a certain threshold of gas capacity. The cement packer method is a cheaper alternative to workovers that enables operators to build gas capacity by monetizing minor gas reservoirs at lower cost. Group 1 reservoirs are the shallowest hydrocarbon bearing sand with poorer reservoir quality and relatively thin reservoirs. The behind-casing-opportunities in Minor Group-1 reservoirs previously required a relatively costly pull-tubing rig workover to monetize the reservoir. Opportunities in two wells were optimized from pull –tubing rig workovers to a non-rig program by implementing Cement Packer applications. The tubing was punched to create tubing-casing communication and cement was subsequently pumped through the tubing and into the casing. The hardened cement then acted as a barrier to satisfy operating guidelines. The reservoir was then additionally perforated, flow tested and successfully monetized at a lower cost. Tubing and casing integrity tests prior to well entry demonstrated good tubing and casing integrity. This is critical to ensure that cement will only flow into the casing where the tubing was punched. Once the cement hardened, pressure test from the tubing and from the casing indicated that the cement has effectively isolated both tubulars. Subsequent Cement Bond Log and Ultrasonic Imaging Tool showed fair to good cement above the target perforation depth. These data supported the fact that the cement packer was solid and the reservoir was ready for additional perforation. Taking into account the reservoir quality, it was decided to perforate the reservoir twice with the biggest gun available to ensure the lowest skin possible. Post perforation, there was a sharp increase in the tubing pressure indicating pressure influx from the reservoir. Despite that, casing pressure remained low, confirming no communication and thus the success of the cement packer.The well was later able to unload naturally due to its high reservoir pressure, confirming the producibility of the reservoirs and unlocking similar opportunities in other wells. Additionally, the cement packer approach delivered tremendous cost savings between $6 – 8 mil per well. Besides confirming the reservoirs' producibility,the success also unlocked additional shallow gas behind casing opportunities in the area.This method will now be the first-choice option to monetize any hydrocarbon resources in reservoirs located above the top packer.