N. Kiratzis, Andreas Barbatsis, Nikolaos Kosmarikos, A. Bisbas, C. Matsouka, L. Nalbandian
{"title":"溶液喷雾热解制备萤石和钙钛矿功能薄膜","authors":"N. Kiratzis, Andreas Barbatsis, Nikolaos Kosmarikos, A. Bisbas, C. Matsouka, L. Nalbandian","doi":"10.4028/p-fmd63b","DOIUrl":null,"url":null,"abstract":"Solution Spray Pyrolysis (SST) was successfully implemented to fabricate thin perovskite and fluorite films on dense Yttria Stabilized Zirconia (YSZ) and Lanthanum Strontium Ferrate (LSF70) substrates. These composite structures are ubiquitous in solid oxide fuel cells and electrolyzers, CO gas sensors and ceramic membranes. With this technique, successful in situ manipulation of the film’s functional characteristics such as porosity and thickness is easily achieved by adjusting its functional parameters.In the present contribution, we report on the optimization of the physicochemical parameters of this open atmosphere technique with respect to the substrate temperature and deposition time for the fabrication of films of suitable morphology. Sintered films were characterized by XRD and SEM while thermal analysis was performed on the precursor salts. In addition, AC Impedance analysis was performed on some CGO films in order to assess their electron blocking capability in contact with the LSF substrates.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"53 1","pages":"47 - 52"},"PeriodicalIF":0.4000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fabrication of Fluorite and Perovskite Functional Films by Solution Spray Pyrolysis\",\"authors\":\"N. Kiratzis, Andreas Barbatsis, Nikolaos Kosmarikos, A. Bisbas, C. Matsouka, L. Nalbandian\",\"doi\":\"10.4028/p-fmd63b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solution Spray Pyrolysis (SST) was successfully implemented to fabricate thin perovskite and fluorite films on dense Yttria Stabilized Zirconia (YSZ) and Lanthanum Strontium Ferrate (LSF70) substrates. These composite structures are ubiquitous in solid oxide fuel cells and electrolyzers, CO gas sensors and ceramic membranes. With this technique, successful in situ manipulation of the film’s functional characteristics such as porosity and thickness is easily achieved by adjusting its functional parameters.In the present contribution, we report on the optimization of the physicochemical parameters of this open atmosphere technique with respect to the substrate temperature and deposition time for the fabrication of films of suitable morphology. Sintered films were characterized by XRD and SEM while thermal analysis was performed on the precursor salts. In addition, AC Impedance analysis was performed on some CGO films in order to assess their electron blocking capability in contact with the LSF substrates.\",\"PeriodicalId\":18861,\"journal\":{\"name\":\"Nano Hybrids and Composites\",\"volume\":\"53 1\",\"pages\":\"47 - 52\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Hybrids and Composites\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/p-fmd63b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/p-fmd63b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Fabrication of Fluorite and Perovskite Functional Films by Solution Spray Pyrolysis
Solution Spray Pyrolysis (SST) was successfully implemented to fabricate thin perovskite and fluorite films on dense Yttria Stabilized Zirconia (YSZ) and Lanthanum Strontium Ferrate (LSF70) substrates. These composite structures are ubiquitous in solid oxide fuel cells and electrolyzers, CO gas sensors and ceramic membranes. With this technique, successful in situ manipulation of the film’s functional characteristics such as porosity and thickness is easily achieved by adjusting its functional parameters.In the present contribution, we report on the optimization of the physicochemical parameters of this open atmosphere technique with respect to the substrate temperature and deposition time for the fabrication of films of suitable morphology. Sintered films were characterized by XRD and SEM while thermal analysis was performed on the precursor salts. In addition, AC Impedance analysis was performed on some CGO films in order to assess their electron blocking capability in contact with the LSF substrates.