基于logistic回归的新型COVID-19住院死亡率早期预测联合指标

IF 0.2 Q4 RESPIRATORY SYSTEM Minerva Respiratory Medicine Pub Date : 2023-02-01 DOI:10.23736/s2784-8477.22.02007-1
Stefania Bassu, Elena Masotto, Chiara Sanna, Verdiana Muscas, Dario Argiolas, C. Carru, P. Pirina, A. Mangoni, P. Paliogiannis, A. Fois, A. Zinellu
{"title":"基于logistic回归的新型COVID-19住院死亡率早期预测联合指标","authors":"Stefania Bassu, Elena Masotto, Chiara Sanna, Verdiana Muscas, Dario Argiolas, C. Carru, P. Pirina, A. Mangoni, P. Paliogiannis, A. Fois, A. Zinellu","doi":"10.23736/s2784-8477.22.02007-1","DOIUrl":null,"url":null,"abstract":"BACKGROUND: While the type and the number of treatments for Coronavirus Disease 2019 (COVID-19) have substantially evolved since the start of the pandemic a significant number of hospitalized patients continue to succumb. This requires ongoing research in the development and improvement of early risk stratification tools. METHOD(S): We developed a prognostic score using epidemiological, clinical, laboratory, and treatment variables collected on admission in 130 adult COVID-19 patients followed until in-hospital death (N.=38) or discharge (N.=92). Potential variables were selected via multivariable logistic regression modelling conducted using a logistic regression univariate analysis to create a combined index. RESULT(S): Age, Charlson Comorbidity Index, P/F ratio, prothrombin time, C-reactive protein and troponin were the selected variables. AUROC indicated that the model had an excellent AUC value (0.971, 95% CI 0.926 to 0.993) with 100% sensitivity and 83% specificity for in-hospital mortality. The Hosmer-Lemeshow calibration test yielded non-significant P values (chi2=1.79, P=0.99) indicates good calibration. CONCLUSION(S): This newly developed combined index could be useful to predict mortality of hospitalized COVID-19 patients on admission.Copyright © 2022 EDIZIONI MINERVA MEDICA.","PeriodicalId":29817,"journal":{"name":"Minerva Respiratory Medicine","volume":"45 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new logistic regression derived combined index for early prediction of in-hospital mortality in COVID-19 patients\",\"authors\":\"Stefania Bassu, Elena Masotto, Chiara Sanna, Verdiana Muscas, Dario Argiolas, C. Carru, P. Pirina, A. Mangoni, P. Paliogiannis, A. Fois, A. Zinellu\",\"doi\":\"10.23736/s2784-8477.22.02007-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BACKGROUND: While the type and the number of treatments for Coronavirus Disease 2019 (COVID-19) have substantially evolved since the start of the pandemic a significant number of hospitalized patients continue to succumb. This requires ongoing research in the development and improvement of early risk stratification tools. METHOD(S): We developed a prognostic score using epidemiological, clinical, laboratory, and treatment variables collected on admission in 130 adult COVID-19 patients followed until in-hospital death (N.=38) or discharge (N.=92). Potential variables were selected via multivariable logistic regression modelling conducted using a logistic regression univariate analysis to create a combined index. RESULT(S): Age, Charlson Comorbidity Index, P/F ratio, prothrombin time, C-reactive protein and troponin were the selected variables. AUROC indicated that the model had an excellent AUC value (0.971, 95% CI 0.926 to 0.993) with 100% sensitivity and 83% specificity for in-hospital mortality. The Hosmer-Lemeshow calibration test yielded non-significant P values (chi2=1.79, P=0.99) indicates good calibration. CONCLUSION(S): This newly developed combined index could be useful to predict mortality of hospitalized COVID-19 patients on admission.Copyright © 2022 EDIZIONI MINERVA MEDICA.\",\"PeriodicalId\":29817,\"journal\":{\"name\":\"Minerva Respiratory Medicine\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Minerva Respiratory Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23736/s2784-8477.22.02007-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minerva Respiratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23736/s2784-8477.22.02007-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

背景:自大流行开始以来,尽管2019冠状病毒病(COVID-19)的治疗类型和数量发生了重大变化,但仍有大量住院患者死亡。这需要在开发和改进早期风险分层工具方面进行持续研究。方法:我们利用入院时收集的流行病学、临床、实验室和治疗变量,对130例成年COVID-19患者进行预后评分,直至院内死亡(38例)或出院(92例)。通过多变量logistic回归建模选择潜在变量,采用单变量logistic回归分析创建组合指数。结果(S):年龄、Charlson合并症指数、P/F比、凝血酶原时间、c反应蛋白和肌钙蛋白是选择的变量。AUROC结果表明,该模型对院内死亡率具有良好的AUC值(0.971,95% CI 0.926 ~ 0.993),敏感性为100%,特异性为83%。Hosmer-Lemeshow校准检验P值不显著(ch2 =1.79, P=0.99),表明校准良好。结论:该综合指标可用于预测COVID-19住院患者入院时的死亡率。版权所有©2022 EDIZIONI MINERVA MEDICA。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new logistic regression derived combined index for early prediction of in-hospital mortality in COVID-19 patients
BACKGROUND: While the type and the number of treatments for Coronavirus Disease 2019 (COVID-19) have substantially evolved since the start of the pandemic a significant number of hospitalized patients continue to succumb. This requires ongoing research in the development and improvement of early risk stratification tools. METHOD(S): We developed a prognostic score using epidemiological, clinical, laboratory, and treatment variables collected on admission in 130 adult COVID-19 patients followed until in-hospital death (N.=38) or discharge (N.=92). Potential variables were selected via multivariable logistic regression modelling conducted using a logistic regression univariate analysis to create a combined index. RESULT(S): Age, Charlson Comorbidity Index, P/F ratio, prothrombin time, C-reactive protein and troponin were the selected variables. AUROC indicated that the model had an excellent AUC value (0.971, 95% CI 0.926 to 0.993) with 100% sensitivity and 83% specificity for in-hospital mortality. The Hosmer-Lemeshow calibration test yielded non-significant P values (chi2=1.79, P=0.99) indicates good calibration. CONCLUSION(S): This newly developed combined index could be useful to predict mortality of hospitalized COVID-19 patients on admission.Copyright © 2022 EDIZIONI MINERVA MEDICA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Minerva Respiratory Medicine
Minerva Respiratory Medicine RESPIRATORY SYSTEM-
CiteScore
1.00
自引率
25.00%
发文量
31
期刊最新文献
Exogenous lipoid pneumonia secondary to repetitive micro-aspiration of paraffin oils laxatives Breathing new life into asthma research: a review of machine learning and multi-omics approaches Enhancing chronic obstructive pulmonary disease management: long-term noninvasive ventilation, ventilation, holistic treatment, monitoring, and artificial intelligence integration Smoking effects on the pulmonary functions and disease activity in rheumatoid arthritis patients: potential value of anticyclic citrullinated peptide assessed in bronchoalveolar lavage High-intensity non-invasive ventilation: a brief review and update
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1