Mark J. Cianchetti, Joseph C. Kerekes, D. Albonesi
{"title":"相位网:一种快速传输的光路由网络","authors":"Mark J. Cianchetti, Joseph C. Kerekes, D. Albonesi","doi":"10.1145/1555754.1555809","DOIUrl":null,"url":null,"abstract":"Tens and eventually hundreds of processing cores are projected to be integrated onto future microprocessors, making the global interconnect a key component to achieving scalable chip performance within a given power envelope. While CMOS-compatible nanophotonics has emerged as a leading candidate for replacing global wires beyond the 22nm timeframe, on-chip optical interconnect architectures proposed thus far are either limited in scalability or are dependent on comparatively slow electrical control networks.\n In this paper, we present Phastlane, a hybrid electrical/optical routing network for future large scale, cache coherent multicore microprocessors. The heart of the Phastlane network is a low-latency optical crossbar that uses simple predecoded source routing to transmit cache-line-sized packets several hops in a single clock cycle under contentionless conditions. When contention exists, the router makes use of electrical buffers and, if necessary, a high speed drop signaling network. Overall, Phastlane achieve 2X better network performance than a state-of-the-art electrical baseline while consuming 80% less network power.","PeriodicalId":91388,"journal":{"name":"Proceedings. International Symposium on Computer Architecture","volume":"5 1","pages":"441-450"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"186","resultStr":"{\"title\":\"Phastlane: a rapid transit optical routing network\",\"authors\":\"Mark J. Cianchetti, Joseph C. Kerekes, D. Albonesi\",\"doi\":\"10.1145/1555754.1555809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tens and eventually hundreds of processing cores are projected to be integrated onto future microprocessors, making the global interconnect a key component to achieving scalable chip performance within a given power envelope. While CMOS-compatible nanophotonics has emerged as a leading candidate for replacing global wires beyond the 22nm timeframe, on-chip optical interconnect architectures proposed thus far are either limited in scalability or are dependent on comparatively slow electrical control networks.\\n In this paper, we present Phastlane, a hybrid electrical/optical routing network for future large scale, cache coherent multicore microprocessors. The heart of the Phastlane network is a low-latency optical crossbar that uses simple predecoded source routing to transmit cache-line-sized packets several hops in a single clock cycle under contentionless conditions. When contention exists, the router makes use of electrical buffers and, if necessary, a high speed drop signaling network. Overall, Phastlane achieve 2X better network performance than a state-of-the-art electrical baseline while consuming 80% less network power.\",\"PeriodicalId\":91388,\"journal\":{\"name\":\"Proceedings. International Symposium on Computer Architecture\",\"volume\":\"5 1\",\"pages\":\"441-450\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"186\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. International Symposium on Computer Architecture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1555754.1555809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. International Symposium on Computer Architecture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1555754.1555809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phastlane: a rapid transit optical routing network
Tens and eventually hundreds of processing cores are projected to be integrated onto future microprocessors, making the global interconnect a key component to achieving scalable chip performance within a given power envelope. While CMOS-compatible nanophotonics has emerged as a leading candidate for replacing global wires beyond the 22nm timeframe, on-chip optical interconnect architectures proposed thus far are either limited in scalability or are dependent on comparatively slow electrical control networks.
In this paper, we present Phastlane, a hybrid electrical/optical routing network for future large scale, cache coherent multicore microprocessors. The heart of the Phastlane network is a low-latency optical crossbar that uses simple predecoded source routing to transmit cache-line-sized packets several hops in a single clock cycle under contentionless conditions. When contention exists, the router makes use of electrical buffers and, if necessary, a high speed drop signaling network. Overall, Phastlane achieve 2X better network performance than a state-of-the-art electrical baseline while consuming 80% less network power.