使用混合技术的无创血糖监测

N. Nanayakkara, S C Munasingha, G P Ruwanpathirana
{"title":"使用混合技术的无创血糖监测","authors":"N. Nanayakkara, S C Munasingha, G P Ruwanpathirana","doi":"10.1109/MERCON.2018.8421885","DOIUrl":null,"url":null,"abstract":"Diabetes needs regular blood glucose monitoring to control it. Invasive blood glucose measuring is the current gold standard. It causes discomfort for the patient and sometimes even infections. Researchers around the world have reported different techniques to measure blood glucose levels non-invasively, but a universally acceptable method with required accuracy is not yet available. We proposed a novel approach to measure blood glucose level non-invasively using a hybrid technique combining Near InfraRed (NIR) absorption and bio-impedance measurements. We tested the methods individually first. Then Artificial Neural Network (ANN) and least squares regression were used to integrate the two methods. The combined methods showed better accuracy compared to the individual measurements. The hybrid technique developed using the linear regression models showed a superior outcome with 90% and 10% of the data points in the regions A and B of the Clarke error grid, which are considered acceptable.","PeriodicalId":6603,"journal":{"name":"2018 Moratuwa Engineering Research Conference (MERCon)","volume":"47 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Non-Invasive Blood Glucose Monitoring using a Hybrid Technique\",\"authors\":\"N. Nanayakkara, S C Munasingha, G P Ruwanpathirana\",\"doi\":\"10.1109/MERCON.2018.8421885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diabetes needs regular blood glucose monitoring to control it. Invasive blood glucose measuring is the current gold standard. It causes discomfort for the patient and sometimes even infections. Researchers around the world have reported different techniques to measure blood glucose levels non-invasively, but a universally acceptable method with required accuracy is not yet available. We proposed a novel approach to measure blood glucose level non-invasively using a hybrid technique combining Near InfraRed (NIR) absorption and bio-impedance measurements. We tested the methods individually first. Then Artificial Neural Network (ANN) and least squares regression were used to integrate the two methods. The combined methods showed better accuracy compared to the individual measurements. The hybrid technique developed using the linear regression models showed a superior outcome with 90% and 10% of the data points in the regions A and B of the Clarke error grid, which are considered acceptable.\",\"PeriodicalId\":6603,\"journal\":{\"name\":\"2018 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"47 1\",\"pages\":\"7-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCON.2018.8421885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCON.2018.8421885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

糖尿病需要定期监测血糖来控制。侵入式血糖测量是目前的金标准。它会使病人感到不适,有时甚至会感染。世界各地的研究人员已经报告了不同的无创测量血糖水平的技术,但目前还没有一种普遍接受的准确度要求的方法。我们提出了一种利用近红外(NIR)吸收和生物阻抗测量相结合的混合技术无创测量血糖水平的新方法。我们首先分别测试了这些方法。然后利用人工神经网络(ANN)和最小二乘回归对两种方法进行融合。与单独测量相比,组合方法显示出更好的准确性。使用线性回归模型开发的混合技术在Clarke误差网格的a区和B区分别有90%和10%的数据点显示出优越的结果,这被认为是可以接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Invasive Blood Glucose Monitoring using a Hybrid Technique
Diabetes needs regular blood glucose monitoring to control it. Invasive blood glucose measuring is the current gold standard. It causes discomfort for the patient and sometimes even infections. Researchers around the world have reported different techniques to measure blood glucose levels non-invasively, but a universally acceptable method with required accuracy is not yet available. We proposed a novel approach to measure blood glucose level non-invasively using a hybrid technique combining Near InfraRed (NIR) absorption and bio-impedance measurements. We tested the methods individually first. Then Artificial Neural Network (ANN) and least squares regression were used to integrate the two methods. The combined methods showed better accuracy compared to the individual measurements. The hybrid technique developed using the linear regression models showed a superior outcome with 90% and 10% of the data points in the regions A and B of the Clarke error grid, which are considered acceptable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fired-Siltstone Based Geopolymers for CO2 Sequestration Wells : A Study on the Effect of Curing Temperature Design and Development of a Smart Wheelchair with Multiple Control Interfaces Modelling Transfer Function of Power Transformers Using Sweep Frequency Response Analysis 3D Full-Field Deformation Measuring Technique with Optics-Based Measurements Optimization of Thermal Comfort in Sri Lankan Residential Buildings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1