泊松-林德利分布的统计性质和不同的估计方法

Mohammed Amine Meraou, M. Z. Raqab
{"title":"泊松-林德利分布的统计性质和不同的估计方法","authors":"Mohammed Amine Meraou, M. Z. Raqab","doi":"10.2991/JSTA.D.210105.001","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new class of distributions by compounding Lindley distributed random variates with the number of variates being zero-truncated Poisson distribution. This model is called a compound zero-truncated Poisson–Lindley distribution with two parameters. Different statistical properties of the proposed model are discussed. We describe different methods of estimation for the unknown parameters involved in the model. These methods include maximum likelihood, least squares, weighted least squares, Cramer–vonMises, maximum product of spacings, Anderson–Darling and right-tail Anderson–Darling methods. Numerical simulation experiments are conducted to assess the performance of the so obtained estimators developed from these methods. Finally, the potentiality of the model is studied using one real data set representing the monthly highest snowfall during February 2018, for a subset of stations in the Global Historical Climatological Network of USA.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Statistical Properties and Different Estimation Procedures of Poisson–Lindley Distribution\",\"authors\":\"Mohammed Amine Meraou, M. Z. Raqab\",\"doi\":\"10.2991/JSTA.D.210105.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new class of distributions by compounding Lindley distributed random variates with the number of variates being zero-truncated Poisson distribution. This model is called a compound zero-truncated Poisson–Lindley distribution with two parameters. Different statistical properties of the proposed model are discussed. We describe different methods of estimation for the unknown parameters involved in the model. These methods include maximum likelihood, least squares, weighted least squares, Cramer–vonMises, maximum product of spacings, Anderson–Darling and right-tail Anderson–Darling methods. Numerical simulation experiments are conducted to assess the performance of the so obtained estimators developed from these methods. Finally, the potentiality of the model is studied using one real data set representing the monthly highest snowfall during February 2018, for a subset of stations in the Global Historical Climatological Network of USA.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/JSTA.D.210105.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/JSTA.D.210105.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一类新的分布,将林德利分布随机变量与零截断泊松分布复配。该模型称为具有两个参数的零截断复合泊松-林德利分布。讨论了所提模型的不同统计性质。我们描述了模型中未知参数的不同估计方法。这些方法包括最大似然、最小二乘、加权最小二乘、Cramer-vonMises、最大间距积、Anderson-Darling和右尾Anderson-Darling方法。通过数值模拟实验对这些方法得到的估计器的性能进行了评估。最后,使用代表2018年2月月最高降雪量的真实数据集(美国全球历史气候网络的一个站点子集)研究了该模型的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical Properties and Different Estimation Procedures of Poisson–Lindley Distribution
In this paper, we propose a new class of distributions by compounding Lindley distributed random variates with the number of variates being zero-truncated Poisson distribution. This model is called a compound zero-truncated Poisson–Lindley distribution with two parameters. Different statistical properties of the proposed model are discussed. We describe different methods of estimation for the unknown parameters involved in the model. These methods include maximum likelihood, least squares, weighted least squares, Cramer–vonMises, maximum product of spacings, Anderson–Darling and right-tail Anderson–Darling methods. Numerical simulation experiments are conducted to assess the performance of the so obtained estimators developed from these methods. Finally, the potentiality of the model is studied using one real data set representing the monthly highest snowfall during February 2018, for a subset of stations in the Global Historical Climatological Network of USA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
期刊最新文献
The Transformed MG-Extended Exponential Distribution: Properties and Applications Utilizing Repetitive Sampling in the Construction of a Control Chart for Lindley Distribution with Time Truncation Deriving the Distribution and Exploring the Utility of Partial $$R^2$$ in the Era of Big Data Neutrosophic Topp-Leone Distribution for Interval-Valued Data Analysis Topp-Leone Exponentiated Pareto Distribution: Properties and Application to Covid-19 Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1