{"title":"氧化物/水电解质界面的差分容量理论","authors":"S. Levine, A. L. Smith","doi":"10.1039/DF9715200290","DOIUrl":null,"url":null,"abstract":"The conditions under which an oxide surface in aqueous solution will obey the Nernst equation with respect to H+/OH– as potential-determining ions are investigated and a modified form of the Nernst equation is derived. This is combined with a model of the inner part of the double layer involving adsorption of both anions and cations of a supporting uni-univalent electrolyte and a discreteness-of-charge correction in their adsorption isotherms. Theoretical total differential capacities at the interface are compared with experimental data for TiO2 and SiO2.","PeriodicalId":11262,"journal":{"name":"Discussions of The Faraday Society","volume":"112 1","pages":"290-301"},"PeriodicalIF":0.0000,"publicationDate":"1971-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"282","resultStr":"{\"title\":\"Theory of the differential capacity of the oxide/aqueous electrolyte interface\",\"authors\":\"S. Levine, A. L. Smith\",\"doi\":\"10.1039/DF9715200290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conditions under which an oxide surface in aqueous solution will obey the Nernst equation with respect to H+/OH– as potential-determining ions are investigated and a modified form of the Nernst equation is derived. This is combined with a model of the inner part of the double layer involving adsorption of both anions and cations of a supporting uni-univalent electrolyte and a discreteness-of-charge correction in their adsorption isotherms. Theoretical total differential capacities at the interface are compared with experimental data for TiO2 and SiO2.\",\"PeriodicalId\":11262,\"journal\":{\"name\":\"Discussions of The Faraday Society\",\"volume\":\"112 1\",\"pages\":\"290-301\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1971-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"282\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discussions of The Faraday Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/DF9715200290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discussions of The Faraday Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/DF9715200290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Theory of the differential capacity of the oxide/aqueous electrolyte interface
The conditions under which an oxide surface in aqueous solution will obey the Nernst equation with respect to H+/OH– as potential-determining ions are investigated and a modified form of the Nernst equation is derived. This is combined with a model of the inner part of the double layer involving adsorption of both anions and cations of a supporting uni-univalent electrolyte and a discreteness-of-charge correction in their adsorption isotherms. Theoretical total differential capacities at the interface are compared with experimental data for TiO2 and SiO2.