密码实现的概率关系验证

G. Barthe, C. Fournet, B. Grégoire, Pierre-Yves Strub, N. Swamy, Santiago Zanella Béguelin
{"title":"密码实现的概率关系验证","authors":"G. Barthe, C. Fournet, B. Grégoire, Pierre-Yves Strub, N. Swamy, Santiago Zanella Béguelin","doi":"10.1145/2535838.2535847","DOIUrl":null,"url":null,"abstract":"Relational program logics have been used for mechanizing formal proofs of various cryptographic constructions. With an eye towards scaling these successes towards end-to-end security proofs for implementations of distributed systems, we present RF*, a relational extension of F*, a general-purpose higher-order stateful programming language with a verification system based on refinement types. The distinguishing feature of F* is a relational Hoare logic for a higher-order, stateful, probabilistic language. Through careful language design, we adapt the F* typechecker to generate both classic and relational verification conditions, and to automatically discharge their proofs using an SMT solver. Thus, we are able to benefit from the existing features of F*, including its abstraction facilities for modular reasoning about program fragments. We evaluate RF* experimentally by programming a series of cryptographic constructions and protocols, and by verifying their security properties, ranging from information flow to unlinkability, integrity, and privacy. Moreover, we validate the design of RF* by formalizing in Coq a core probabilistic λ calculus and a relational refinement type system and proving the soundness of the latter against a denotational semantics of the probabilistic lambda λ calculus.","PeriodicalId":20683,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":"{\"title\":\"Probabilistic relational verification for cryptographic implementations\",\"authors\":\"G. Barthe, C. Fournet, B. Grégoire, Pierre-Yves Strub, N. Swamy, Santiago Zanella Béguelin\",\"doi\":\"10.1145/2535838.2535847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Relational program logics have been used for mechanizing formal proofs of various cryptographic constructions. With an eye towards scaling these successes towards end-to-end security proofs for implementations of distributed systems, we present RF*, a relational extension of F*, a general-purpose higher-order stateful programming language with a verification system based on refinement types. The distinguishing feature of F* is a relational Hoare logic for a higher-order, stateful, probabilistic language. Through careful language design, we adapt the F* typechecker to generate both classic and relational verification conditions, and to automatically discharge their proofs using an SMT solver. Thus, we are able to benefit from the existing features of F*, including its abstraction facilities for modular reasoning about program fragments. We evaluate RF* experimentally by programming a series of cryptographic constructions and protocols, and by verifying their security properties, ranging from information flow to unlinkability, integrity, and privacy. Moreover, we validate the design of RF* by formalizing in Coq a core probabilistic λ calculus and a relational refinement type system and proving the soundness of the latter against a denotational semantics of the probabilistic lambda λ calculus.\",\"PeriodicalId\":20683,\"journal\":{\"name\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"103\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2535838.2535847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2535838.2535847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

摘要

关系程序逻辑已被用于机械化各种密码结构的形式证明。为了将这些成功扩展到分布式系统实现的端到端安全证明,我们提出了RF*, F*的关系扩展,F*是一种通用的高阶状态编程语言,具有基于细化类型的验证系统。F*的显著特征是用于高阶、有状态、概率语言的关系Hoare逻辑。通过仔细的语言设计,我们调整了F*类型检查器来生成经典和关系验证条件,并使用SMT求解器自动释放它们的证明。因此,我们能够受益于F*的现有特性,包括它对程序片段进行模块化推理的抽象功能。我们通过编程一系列加密结构和协议,并通过验证其安全属性(从信息流到不可链接性、完整性和隐私性),对RF*进行了实验评估。此外,我们通过在Coq中形式化一个核心概率λ演算和一个关系细化类型系统来验证RF*的设计,并证明后者针对概率λ演算的指称语义的合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probabilistic relational verification for cryptographic implementations
Relational program logics have been used for mechanizing formal proofs of various cryptographic constructions. With an eye towards scaling these successes towards end-to-end security proofs for implementations of distributed systems, we present RF*, a relational extension of F*, a general-purpose higher-order stateful programming language with a verification system based on refinement types. The distinguishing feature of F* is a relational Hoare logic for a higher-order, stateful, probabilistic language. Through careful language design, we adapt the F* typechecker to generate both classic and relational verification conditions, and to automatically discharge their proofs using an SMT solver. Thus, we are able to benefit from the existing features of F*, including its abstraction facilities for modular reasoning about program fragments. We evaluate RF* experimentally by programming a series of cryptographic constructions and protocols, and by verifying their security properties, ranging from information flow to unlinkability, integrity, and privacy. Moreover, we validate the design of RF* by formalizing in Coq a core probabilistic λ calculus and a relational refinement type system and proving the soundness of the latter against a denotational semantics of the probabilistic lambda λ calculus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Verified systems Session details: Semantic models 2 Session details: Program analysis 3 Session details: Program analysis 1 Session details: Type system design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1