基于成本的主Lq支持向量机的充分降维重赋权

A. Artemiou
{"title":"基于成本的主Lq支持向量机的充分降维重赋权","authors":"A. Artemiou","doi":"10.3844/JMSSP.2019.218.224","DOIUrl":null,"url":null,"abstract":"In this work we try to address the imbalance of the number of points which naturally occurs when slicing the response in Sufficient Dimension Reduction methods (SDR). Specifically, some recently proposed support vector machine based (SVM-based) methodology suffers a lot more due to the properties of the SVM algorithm. We target a recently proposed algorithm called Principal LqSVM and we propose the reweighting based on a different cost. We demonstrate that our reweighted proposal works better than the original algorithm in simulated and real data.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"36 12 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cost-based Reweighting for Principal Lq Support Vector Machines for Sufficient Dimension Reduction\",\"authors\":\"A. Artemiou\",\"doi\":\"10.3844/JMSSP.2019.218.224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we try to address the imbalance of the number of points which naturally occurs when slicing the response in Sufficient Dimension Reduction methods (SDR). Specifically, some recently proposed support vector machine based (SVM-based) methodology suffers a lot more due to the properties of the SVM algorithm. We target a recently proposed algorithm called Principal LqSVM and we propose the reweighting based on a different cost. We demonstrate that our reweighted proposal works better than the original algorithm in simulated and real data.\",\"PeriodicalId\":41981,\"journal\":{\"name\":\"Jordan Journal of Mathematics and Statistics\",\"volume\":\"36 12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jordan Journal of Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3844/JMSSP.2019.218.224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.218.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,我们试图解决在充分降维方法(SDR)中对响应进行切片时自然出现的点数不平衡问题。具体来说,最近提出的一些基于支持向量机(SVM-based)的方法由于支持向量机算法的特性而遭受更多的损失。我们以最近提出的Principal LqSVM算法为目标,提出了基于不同代价的重加权算法。在模拟数据和实际数据中,我们证明了我们的改进方案比原始算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cost-based Reweighting for Principal Lq Support Vector Machines for Sufficient Dimension Reduction
In this work we try to address the imbalance of the number of points which naturally occurs when slicing the response in Sufficient Dimension Reduction methods (SDR). Specifically, some recently proposed support vector machine based (SVM-based) methodology suffers a lot more due to the properties of the SVM algorithm. We target a recently proposed algorithm called Principal LqSVM and we propose the reweighting based on a different cost. We demonstrate that our reweighted proposal works better than the original algorithm in simulated and real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
期刊最新文献
Multivariate Option Pricing with Gaussian Mixture Distributions and Mixed Copulas Stochastic Model for Pricing Normal Bonds when Maturity Periods Cross Over to Pandemic Period Measurable Functional Calculi and Spectral Theory Elements of Formal Probabilistic Mechanics Chlodowsky Type (λ, q)-Bernstein Stancu Operator of Korovkin-Type Approximation Theorem of Rough I-Core of Triple Sequences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1