{"title":"基于两层混合框架的高效内容图像检索系统","authors":"Fatima Shaheen, R. Raibagkar","doi":"10.2478/acss-2022-0018","DOIUrl":null,"url":null,"abstract":"Abstract The Content Based Image Retrieval (CBIR) system is a framework for finding images from huge datasets that are similar to a given image. The main component of CBIR system is the strategy for retrieval of images. There are many strategies available and most of these rely on single feature extraction. The single feature-based strategy may not be efficient for all types of images. Similarly, due to a larger set of data, image retrieval may become inefficient. Hence, this article proposes a system that comprises of two-stage retrieval with different features at every stage where the first stage will be coarse retrieval and the second will be fine retrieval. The proposed framework is validated on standard benchmark images and compared with existing frameworks. The results are recorded in graphical and numerical form, thus supporting the efficiency of the proposed system.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"77 1","pages":"166 - 182"},"PeriodicalIF":0.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Content-Based Image Retrieval System with Two-Tier Hybrid Frameworks\",\"authors\":\"Fatima Shaheen, R. Raibagkar\",\"doi\":\"10.2478/acss-2022-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Content Based Image Retrieval (CBIR) system is a framework for finding images from huge datasets that are similar to a given image. The main component of CBIR system is the strategy for retrieval of images. There are many strategies available and most of these rely on single feature extraction. The single feature-based strategy may not be efficient for all types of images. Similarly, due to a larger set of data, image retrieval may become inefficient. Hence, this article proposes a system that comprises of two-stage retrieval with different features at every stage where the first stage will be coarse retrieval and the second will be fine retrieval. The proposed framework is validated on standard benchmark images and compared with existing frameworks. The results are recorded in graphical and numerical form, thus supporting the efficiency of the proposed system.\",\"PeriodicalId\":41960,\"journal\":{\"name\":\"Applied Computer Systems\",\"volume\":\"77 1\",\"pages\":\"166 - 182\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/acss-2022-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2022-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Efficient Content-Based Image Retrieval System with Two-Tier Hybrid Frameworks
Abstract The Content Based Image Retrieval (CBIR) system is a framework for finding images from huge datasets that are similar to a given image. The main component of CBIR system is the strategy for retrieval of images. There are many strategies available and most of these rely on single feature extraction. The single feature-based strategy may not be efficient for all types of images. Similarly, due to a larger set of data, image retrieval may become inefficient. Hence, this article proposes a system that comprises of two-stage retrieval with different features at every stage where the first stage will be coarse retrieval and the second will be fine retrieval. The proposed framework is validated on standard benchmark images and compared with existing frameworks. The results are recorded in graphical and numerical form, thus supporting the efficiency of the proposed system.