Nitesh D. Punyapreddiwar, Sangesh P. Zodape, Atul V. Wankhade, Umesh R. Pratap
{"title":"丙二腈在查尔酮上的共轭加成:生物催化的CC键形成","authors":"Nitesh D. Punyapreddiwar, Sangesh P. Zodape, Atul V. Wankhade, Umesh R. Pratap","doi":"10.1016/j.molcatb.2016.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>An efficient, cost effective and environmentally friendly protocol has been developed for the Michael addition of malononitrile on 1,3-diaryl-2-propen-1-ones (Chalcones) using very cheaper, easily available natural catalyst, baker’s yeast. The whole cells of yeast excellently worked in nonaqueous medium, ethanol without decrease in catalytic activity.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"133 ","pages":"Pages 124-126"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.08.004","citationCount":"6","resultStr":"{\"title\":\"Conjugate addition of malononitrile on chalcone: Biocatalytic CC bond formation\",\"authors\":\"Nitesh D. Punyapreddiwar, Sangesh P. Zodape, Atul V. Wankhade, Umesh R. Pratap\",\"doi\":\"10.1016/j.molcatb.2016.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An efficient, cost effective and environmentally friendly protocol has been developed for the Michael addition of malononitrile on 1,3-diaryl-2-propen-1-ones (Chalcones) using very cheaper, easily available natural catalyst, baker’s yeast. The whole cells of yeast excellently worked in nonaqueous medium, ethanol without decrease in catalytic activity.</p></div>\",\"PeriodicalId\":16416,\"journal\":{\"name\":\"Journal of Molecular Catalysis B-enzymatic\",\"volume\":\"133 \",\"pages\":\"Pages 124-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.08.004\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Catalysis B-enzymatic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1381117716301485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716301485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
Conjugate addition of malononitrile on chalcone: Biocatalytic CC bond formation
An efficient, cost effective and environmentally friendly protocol has been developed for the Michael addition of malononitrile on 1,3-diaryl-2-propen-1-ones (Chalcones) using very cheaper, easily available natural catalyst, baker’s yeast. The whole cells of yeast excellently worked in nonaqueous medium, ethanol without decrease in catalytic activity.
期刊介绍:
Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation.
Papers should report novel and significant advances in one or more of the following topics;
Applied and fundamental studies of enzymes used for biocatalysis;
Industrial applications of enzymatic processes, e.g. in fine chemical synthesis;
Chemo-, regio- and enantioselective transformations;
Screening for biocatalysts;
Integration of biocatalytic and chemical steps in organic syntheses;
Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies;
Enzyme immobilization and stabilization, particularly in non-conventional media;
Bioprocess engineering aspects, e.g. membrane bioreactors;
Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification;
Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity;
Biomimetic studies related to enzymatic transformations.