垂直圆柱波浪冲击载荷及疏水表面的影响

Abdallah Mohamed Alwy AL-BEITY, Fatih Korkmaz, B. Güzel
{"title":"垂直圆柱波浪冲击载荷及疏水表面的影响","authors":"Abdallah Mohamed Alwy AL-BEITY, Fatih Korkmaz, B. Güzel","doi":"10.31202/ecjse.1202291","DOIUrl":null,"url":null,"abstract":"Peculiarly cylindrical legs on offshore platforms constantly are exerted vigorously to wave stresses. For their lifetime, a test on structural deformations and pressure measurements is taken. Experimental research on the wave forces affecting cylindrical structures is presented. To determine pressure distributions and deformations in the altered cylinder's surface properties by applying a hydrophobic coating. Hence, the angle at which water drops hit the surface has increased, thus, decreasing water adhesion to the surface. The geometric modification or additional weight coated on the cylinders' surfaces is not notable. Wave loads with various amplitudes and frequencies were applied repeatedly to cylinders with hydrophobic and hydrophilic surface materials. Three pressure sensors and a strain gauge were used to measure pressure distributions and the cylinders' surface deformations respectively. Two cylinders' fluctuation in pressure is carefully examined and analyzed. Cylinder's pressure response for hydrophobic surfaces varied based on the sensor's location by lowering the maximum pressure or the impact time. The structural deformations due to changing surface properties and strain readings were contrasted. The structural deformation changed, with the impacting wave distributed throughout the surface. Image processing demonstrates the variation in the water body's volume to which the surface is exposed, reinforcing this finding.","PeriodicalId":11622,"journal":{"name":"El-Cezeri Fen ve Mühendislik Dergisi","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wave Impact Loads on Vertical Circular Cylinder and the effect of Hydrophobic Surface\",\"authors\":\"Abdallah Mohamed Alwy AL-BEITY, Fatih Korkmaz, B. Güzel\",\"doi\":\"10.31202/ecjse.1202291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Peculiarly cylindrical legs on offshore platforms constantly are exerted vigorously to wave stresses. For their lifetime, a test on structural deformations and pressure measurements is taken. Experimental research on the wave forces affecting cylindrical structures is presented. To determine pressure distributions and deformations in the altered cylinder's surface properties by applying a hydrophobic coating. Hence, the angle at which water drops hit the surface has increased, thus, decreasing water adhesion to the surface. The geometric modification or additional weight coated on the cylinders' surfaces is not notable. Wave loads with various amplitudes and frequencies were applied repeatedly to cylinders with hydrophobic and hydrophilic surface materials. Three pressure sensors and a strain gauge were used to measure pressure distributions and the cylinders' surface deformations respectively. Two cylinders' fluctuation in pressure is carefully examined and analyzed. Cylinder's pressure response for hydrophobic surfaces varied based on the sensor's location by lowering the maximum pressure or the impact time. The structural deformations due to changing surface properties and strain readings were contrasted. The structural deformation changed, with the impacting wave distributed throughout the surface. Image processing demonstrates the variation in the water body's volume to which the surface is exposed, reinforcing this finding.\",\"PeriodicalId\":11622,\"journal\":{\"name\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"El-Cezeri Fen ve Mühendislik Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31202/ecjse.1202291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"El-Cezeri Fen ve Mühendislik Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31202/ecjse.1202291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

海上平台上特殊的圆柱形支腿不断受到波浪应力的强烈作用。对于它们的使用寿命,进行了结构变形试验和压力测量。对波浪力对圆柱结构的影响进行了实验研究。通过涂疏水涂层来确定压力分布和改变后的钢瓶表面特性的变形。因此,水滴撞击表面的角度增加了,从而减少了水对表面的粘附。在圆柱体表面涂覆的几何修饰或额外重量并不显著。在具有疏水和亲水表面材料的圆柱体上反复施加不同振幅和频率的波荷载。使用三个压力传感器和应变片分别测量压力分布和圆柱体表面变形。仔细检查和分析了两个气缸的压力波动。通过降低最大压力或冲击时间,气缸对疏水表面的压力响应根据传感器的位置而变化。对比了由于表面特性和应变读数变化引起的结构变形。结构变形发生变化,冲击波分布在整个表面。图像处理显示了水面暴露的水体体积的变化,加强了这一发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wave Impact Loads on Vertical Circular Cylinder and the effect of Hydrophobic Surface
Peculiarly cylindrical legs on offshore platforms constantly are exerted vigorously to wave stresses. For their lifetime, a test on structural deformations and pressure measurements is taken. Experimental research on the wave forces affecting cylindrical structures is presented. To determine pressure distributions and deformations in the altered cylinder's surface properties by applying a hydrophobic coating. Hence, the angle at which water drops hit the surface has increased, thus, decreasing water adhesion to the surface. The geometric modification or additional weight coated on the cylinders' surfaces is not notable. Wave loads with various amplitudes and frequencies were applied repeatedly to cylinders with hydrophobic and hydrophilic surface materials. Three pressure sensors and a strain gauge were used to measure pressure distributions and the cylinders' surface deformations respectively. Two cylinders' fluctuation in pressure is carefully examined and analyzed. Cylinder's pressure response for hydrophobic surfaces varied based on the sensor's location by lowering the maximum pressure or the impact time. The structural deformations due to changing surface properties and strain readings were contrasted. The structural deformation changed, with the impacting wave distributed throughout the surface. Image processing demonstrates the variation in the water body's volume to which the surface is exposed, reinforcing this finding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human Robot Interaction with Social Humanoid Robots A Single Source Thirteen Level Switched Capacitor Boost Inverter for PV applications Yakınsak-Konik Nozulların Giriş ve Çıkış Çaplarının İtme Kuvveti ve Hacimsel Debi Üzerindeki Etkisinin Teorik, Nümerik ve Deneysel İncelemesi Zeytinyağı Üretim Atıklarının Yün Boyamacılığında Kullanım Olanaklarının Araştırılması Yer Tepki Analizlerinde Farklı Dinamik Kayma Modülü Yaklaşımları Kullanılarak Belirlenen Tepki Spektrumlarının Karşılaştırılması
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1