第25章。机械化学活化与催化

M. N. Kopylovich, A. Ribeiro, E. C. Alegria
{"title":"第25章。机械化学活化与催化","authors":"M. N. Kopylovich, A. Ribeiro, E. C. Alegria","doi":"10.1039/9781788016490-00548","DOIUrl":null,"url":null,"abstract":"Chemical transformations induced by mechanical force in solids are remarkable since they facilitate syntheses that are normally difficult to achieve in solution and thus allow the preparation of new molecules and materials or drastic improvements of the yields and selectivities. In many cases, the noncovalent interactions (NCIs) with mechanochemical treatment differ significantly from those which occur in analogous solvent-assisted processes. Moreover, if a “mechanocatalyst” is introduced into the system, it can additionally alter the NCIs, bond energies and properties of the reaction intermediates. As result, the outcome of many mechanocatalytic reactions can be very different in terms of efficiency or even reaction pathways compared with the traditional solution-based procedures or noncatalytic mechanochemical processes. Accordingly, in this chapter, certain mechanocatalytic reactions in which the NCIs play a key role are overviewed and discussed. Additionally, an overview of some experimental techniques used to study mechanochemical activation and the respective NCIs is also provided.","PeriodicalId":10054,"journal":{"name":"Catalysis Series","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"CHAPTER 25. Mechanochemical Activation and Catalysis\",\"authors\":\"M. N. Kopylovich, A. Ribeiro, E. C. Alegria\",\"doi\":\"10.1039/9781788016490-00548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemical transformations induced by mechanical force in solids are remarkable since they facilitate syntheses that are normally difficult to achieve in solution and thus allow the preparation of new molecules and materials or drastic improvements of the yields and selectivities. In many cases, the noncovalent interactions (NCIs) with mechanochemical treatment differ significantly from those which occur in analogous solvent-assisted processes. Moreover, if a “mechanocatalyst” is introduced into the system, it can additionally alter the NCIs, bond energies and properties of the reaction intermediates. As result, the outcome of many mechanocatalytic reactions can be very different in terms of efficiency or even reaction pathways compared with the traditional solution-based procedures or noncatalytic mechanochemical processes. Accordingly, in this chapter, certain mechanocatalytic reactions in which the NCIs play a key role are overviewed and discussed. Additionally, an overview of some experimental techniques used to study mechanochemical activation and the respective NCIs is also provided.\",\"PeriodicalId\":10054,\"journal\":{\"name\":\"Catalysis Series\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/9781788016490-00548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/9781788016490-00548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在固体中由机械力引起的化学转化是显著的,因为它们促进了通常在溶液中难以实现的合成,从而允许制备新的分子和材料,或大幅度提高产量和选择性。在许多情况下,机械化学处理的非共价相互作用(NCIs)与类似溶剂辅助过程中的非共价相互作用有很大不同。此外,如果在体系中引入“机械催化剂”,它还可以改变反应中间体的NCIs、键能和性质。因此,与传统的基于溶液的程序或非催化机械化学过程相比,许多机械催化反应的结果在效率甚至反应途径方面可能有很大不同。因此,在本章中,对NCIs起关键作用的某些机械催化反应进行概述和讨论。此外,还提供了一些用于研究机械化学活化和各自NCIs的实验技术的概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CHAPTER 25. Mechanochemical Activation and Catalysis
Chemical transformations induced by mechanical force in solids are remarkable since they facilitate syntheses that are normally difficult to achieve in solution and thus allow the preparation of new molecules and materials or drastic improvements of the yields and selectivities. In many cases, the noncovalent interactions (NCIs) with mechanochemical treatment differ significantly from those which occur in analogous solvent-assisted processes. Moreover, if a “mechanocatalyst” is introduced into the system, it can additionally alter the NCIs, bond energies and properties of the reaction intermediates. As result, the outcome of many mechanocatalytic reactions can be very different in terms of efficiency or even reaction pathways compared with the traditional solution-based procedures or noncatalytic mechanochemical processes. Accordingly, in this chapter, certain mechanocatalytic reactions in which the NCIs play a key role are overviewed and discussed. Additionally, an overview of some experimental techniques used to study mechanochemical activation and the respective NCIs is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organocatalytic Dynamic Kinetic Resolution Chapter 2. Amavadin and Related Complexes as Oxidation Catalysts Catalysis with Earth-abundant Elements CHAPTER 5. Anion–π Catalysis CHAPTER 6. Onium Ion-assisted Organic Reactions Through Cation–π Interactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1