修改适应度函数期间使用的进化算法进行设计

A. Garza
{"title":"修改适应度函数期间使用的进化算法进行设计","authors":"A. Garza","doi":"10.1109/CEC.2016.7744370","DOIUrl":null,"url":null,"abstract":"We use an evolutionary algorithm in which we change the fitness function periodically to model the fact that objectives can change during creative problem solving. We performed an experiment to observe the behavior of the evolutionary algorithm regarding its response to these changes and its ability to successfully generate solutions for its creative task despite the changes. An analysis of the results of this experiment sheds some light into the conditions under which the evolutionary algorithm can respond with varying degrees of robustness to the changes.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"34 1","pages":"4555-4561"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modifying the fitness function during the use of an evolutionary algorithm for design\",\"authors\":\"A. Garza\",\"doi\":\"10.1109/CEC.2016.7744370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use an evolutionary algorithm in which we change the fitness function periodically to model the fact that objectives can change during creative problem solving. We performed an experiment to observe the behavior of the evolutionary algorithm regarding its response to these changes and its ability to successfully generate solutions for its creative task despite the changes. An analysis of the results of this experiment sheds some light into the conditions under which the evolutionary algorithm can respond with varying degrees of robustness to the changes.\",\"PeriodicalId\":6344,\"journal\":{\"name\":\"2009 IEEE Congress on Evolutionary Computation\",\"volume\":\"34 1\",\"pages\":\"4555-4561\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Congress on Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2016.7744370\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2016.7744370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们使用一种进化算法,周期性地改变适应度函数,以模拟在创造性问题解决过程中目标可能发生变化的事实。我们进行了一个实验来观察进化算法对这些变化的反应,以及它在变化的情况下为创造性任务成功生成解决方案的能力。对该实验结果的分析揭示了进化算法能够以不同程度的鲁棒性响应变化的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modifying the fitness function during the use of an evolutionary algorithm for design
We use an evolutionary algorithm in which we change the fitness function periodically to model the fact that objectives can change during creative problem solving. We performed an experiment to observe the behavior of the evolutionary algorithm regarding its response to these changes and its ability to successfully generate solutions for its creative task despite the changes. An analysis of the results of this experiment sheds some light into the conditions under which the evolutionary algorithm can respond with varying degrees of robustness to the changes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Step-Size Individualization: a Case Study for The Fish School Search Family A Genetic Ant Colony Optimization Algorithm for Inter-domain Path Computation problem under the Domain Uniqueness constraint A Simulated IMO-DRSA Approach for Cognitive Reduction in Multiobjective Financial Portfolio Interactive Optimization Applying Never-Ending Learning (NEL) Principles to Build a Gene Ontology (GO) Biocurator Many Layer Transfer Learning Genetic Algorithm (MLTLGA): a New Evolutionary Transfer Learning Approach Applied To Pneumonia Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1