UHPLC -荷电气溶胶检测器快速分离甜菊糖甙和甜菊糖提取物

Marcela Hollá, D. Šatínský, F. Švec, H. Sklenářová
{"title":"UHPLC -荷电气溶胶检测器快速分离甜菊糖甙和甜菊糖提取物","authors":"Marcela Hollá, D. Šatínský, F. Švec, H. Sklenářová","doi":"10.2139/ssrn.3875187","DOIUrl":null,"url":null,"abstract":"Natural sweeteners are in high demand as a part of a healthy lifestyle. Among them, sweeteners with decreased caloric value and suitability for diabetes patients are most requested. Extension in their consumption extends the need for their quality control. A fast gradient UHPLC coupled with charged aerosol detection enabling quantitation of stevioside, rebaudioside A-D, and steviolbioside in commercial sweeteners and Stevia rebaudiana plant extracts has been developed. The method was developed to achieve high efficiency, simplicity, versatility, and low solvent consumption. All steviol glycosides were baseline-separated in less than 4 min with a total run time of 7 min. Buffer-free eluents were used in the separations and only 2.45 mL solvent were needed per analysis. The Luna Omega Polar column featuring polar modification of the C18 stationary phase was employed with mobile phases composed of water and acetonitrile for the excellent separation of polar steviol glycosides. The flow rate of the mobile phase 0.35 mL/min, column temperature 50 °C and injection volume 2 µL were used. Critical pair of glycosides, stevioside and rebaudioside A, were baseline separated with a resolution of 2.41. The universal charged aerosol detector allowed quantitation of steviol glycosides with a limit of detection and quantitation 0.15 and 0.5 µg/mL, respectively. Method intra-day precision was less than 2% (RSD), and the recovery was 89.6-105.0% and 93.8-111.4% for plant material and sweetener tablets, respectively. The quantity of steviol glycosides in three out of four commercial sweeteners was 3.0-12.3% higher than declared. The content was about 12.4% less than declared in one sample. But the difference from the labeled content corresponded to trueness and precision of the developed method together with variability of sweeteners production. The most abundant glycoside detected in sweeteners was stevioside followed by rebaudioside A. A leaf-to-stem ratio describing the dominant accumulation of steviol glycosides in leaves affected the differences in the amount of steviol glycosides among plant samples.","PeriodicalId":19880,"journal":{"name":"PharmSciRN EM Feeds","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UHPLC Coupled with Charged Aerosol Detector for Rapid Separation of Steviol Glycosides in Commercial Sweeteners and Extract of Stevia Rebaudiana\",\"authors\":\"Marcela Hollá, D. Šatínský, F. Švec, H. Sklenářová\",\"doi\":\"10.2139/ssrn.3875187\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural sweeteners are in high demand as a part of a healthy lifestyle. Among them, sweeteners with decreased caloric value and suitability for diabetes patients are most requested. Extension in their consumption extends the need for their quality control. A fast gradient UHPLC coupled with charged aerosol detection enabling quantitation of stevioside, rebaudioside A-D, and steviolbioside in commercial sweeteners and Stevia rebaudiana plant extracts has been developed. The method was developed to achieve high efficiency, simplicity, versatility, and low solvent consumption. All steviol glycosides were baseline-separated in less than 4 min with a total run time of 7 min. Buffer-free eluents were used in the separations and only 2.45 mL solvent were needed per analysis. The Luna Omega Polar column featuring polar modification of the C18 stationary phase was employed with mobile phases composed of water and acetonitrile for the excellent separation of polar steviol glycosides. The flow rate of the mobile phase 0.35 mL/min, column temperature 50 °C and injection volume 2 µL were used. Critical pair of glycosides, stevioside and rebaudioside A, were baseline separated with a resolution of 2.41. The universal charged aerosol detector allowed quantitation of steviol glycosides with a limit of detection and quantitation 0.15 and 0.5 µg/mL, respectively. Method intra-day precision was less than 2% (RSD), and the recovery was 89.6-105.0% and 93.8-111.4% for plant material and sweetener tablets, respectively. The quantity of steviol glycosides in three out of four commercial sweeteners was 3.0-12.3% higher than declared. The content was about 12.4% less than declared in one sample. But the difference from the labeled content corresponded to trueness and precision of the developed method together with variability of sweeteners production. The most abundant glycoside detected in sweeteners was stevioside followed by rebaudioside A. A leaf-to-stem ratio describing the dominant accumulation of steviol glycosides in leaves affected the differences in the amount of steviol glycosides among plant samples.\",\"PeriodicalId\":19880,\"journal\":{\"name\":\"PharmSciRN EM Feeds\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PharmSciRN EM Feeds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3875187\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PharmSciRN EM Feeds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3875187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为健康生活方式的一部分,天然甜味剂需求量很大。其中,最需要的是低热值和适合糖尿病患者的甜味剂。消费的扩大扩大了对其质量控制的需要。建立了一种快速梯度UHPLC结合电荷气溶胶检测方法,用于定量商业甜味剂和甜菊糖植物提取物中的甜菊苷、莱鲍迪甙A- d和甜菊苷。该方法具有高效、简便、通用性强、溶剂消耗低等特点。所有甜菊糖苷在不到4分钟的时间内进行基线分离,总运行时间为7分钟。分离时使用无缓冲液,每次分析只需要2.45 mL溶剂。采用对C18固定相进行极性修饰的Luna Omega极性色谱柱,以水和乙腈为流动相,对甜菊醇极性苷进行了较好的分离。流动相流速0.35 mL/min,柱温50℃,进样量2µL。甜叶菊糖苷和雷鲍迪糖苷A这对关键糖苷的基线分离分辨率为2.41。通用带电气溶胶检测仪允许定量甜菊醇苷,检测限和定量限分别为0.15和0.5µg/mL。方法日内精密度< 2% (RSD),加样回收率分别为89.6 ~ 105.0%和93.8 ~ 111.4%。四分之三的商业甜味剂中甜菊醇糖苷的含量比宣称的要高3.0-12.3%。其中一个样品的含量比申报的少12.4%左右。但与标记含量的差异与所开发方法的准确性和精确性以及甜味剂生产的可变性有关。在甜味剂中检测到的最丰富的糖苷是甜菊糖苷,其次是雷鲍鲍苷A。叶柄比描述了甜菊糖苷在叶片中的显性积累,影响了甜菊糖苷在植物样品中的含量差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UHPLC Coupled with Charged Aerosol Detector for Rapid Separation of Steviol Glycosides in Commercial Sweeteners and Extract of Stevia Rebaudiana
Natural sweeteners are in high demand as a part of a healthy lifestyle. Among them, sweeteners with decreased caloric value and suitability for diabetes patients are most requested. Extension in their consumption extends the need for their quality control. A fast gradient UHPLC coupled with charged aerosol detection enabling quantitation of stevioside, rebaudioside A-D, and steviolbioside in commercial sweeteners and Stevia rebaudiana plant extracts has been developed. The method was developed to achieve high efficiency, simplicity, versatility, and low solvent consumption. All steviol glycosides were baseline-separated in less than 4 min with a total run time of 7 min. Buffer-free eluents were used in the separations and only 2.45 mL solvent were needed per analysis. The Luna Omega Polar column featuring polar modification of the C18 stationary phase was employed with mobile phases composed of water and acetonitrile for the excellent separation of polar steviol glycosides. The flow rate of the mobile phase 0.35 mL/min, column temperature 50 °C and injection volume 2 µL were used. Critical pair of glycosides, stevioside and rebaudioside A, were baseline separated with a resolution of 2.41. The universal charged aerosol detector allowed quantitation of steviol glycosides with a limit of detection and quantitation 0.15 and 0.5 µg/mL, respectively. Method intra-day precision was less than 2% (RSD), and the recovery was 89.6-105.0% and 93.8-111.4% for plant material and sweetener tablets, respectively. The quantity of steviol glycosides in three out of four commercial sweeteners was 3.0-12.3% higher than declared. The content was about 12.4% less than declared in one sample. But the difference from the labeled content corresponded to trueness and precision of the developed method together with variability of sweeteners production. The most abundant glycoside detected in sweeteners was stevioside followed by rebaudioside A. A leaf-to-stem ratio describing the dominant accumulation of steviol glycosides in leaves affected the differences in the amount of steviol glycosides among plant samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BH+/MH+-Matching Method for Discovery of Cis-Diol-Containing Modified Nucleosides in Urine by Ribose-Targeted Solid Phase Extraction Followed by Dual-Mass Spectrometry Platform Identification UHPLC Coupled with Charged Aerosol Detector for Rapid Separation of Steviol Glycosides in Commercial Sweeteners and Extract of Stevia Rebaudiana Rapid and Simultaneously Determination of Six Aristolochic Acids and Two Lignans in Asari Radix Et Rhizoma by Ultra Performance Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry Ion Pair-Based Mobile Phase Additives to Improve the Separation of Polar Compounds in Supercritical Fluid Chromatography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1