{"title":"基于差分合成孔径干涉法的三维海岸地貌变形建模","authors":"Maged Mahmoud Margany","doi":"10.5560/ZNA.2012-0031","DOIUrl":null,"url":null,"abstract":"This work presents a new approach for three-dimensional (3D) coastal deformation simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional InSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the DInSAR method is implemented with the phase unwrapping technique. Consequently, DInSAR is used to eliminate the phase decorrelation impact from the interferograms. The study shows the accurate performance of DInSAR with a root mean square error of 0:02±0:21 m and 90% confidence intervals. In conclusion, the DInSAR technique produces an accurate 3D coastal geomorphology reconstruction.","PeriodicalId":54395,"journal":{"name":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","volume":"121 1","pages":"419-420"},"PeriodicalIF":1.8000,"publicationDate":"2012-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Three-dimensional coastal geomorphology deformation modelling using differential synthetic aperture interferometry\",\"authors\":\"Maged Mahmoud Margany\",\"doi\":\"10.5560/ZNA.2012-0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a new approach for three-dimensional (3D) coastal deformation simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional InSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the DInSAR method is implemented with the phase unwrapping technique. Consequently, DInSAR is used to eliminate the phase decorrelation impact from the interferograms. The study shows the accurate performance of DInSAR with a root mean square error of 0:02±0:21 m and 90% confidence intervals. In conclusion, the DInSAR technique produces an accurate 3D coastal geomorphology reconstruction.\",\"PeriodicalId\":54395,\"journal\":{\"name\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"volume\":\"121 1\",\"pages\":\"419-420\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2012-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5560/ZNA.2012-0031\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift Fur Naturforschung Section A-A Journal of Physical Sciences","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5560/ZNA.2012-0031","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Three-dimensional coastal geomorphology deformation modelling using differential synthetic aperture interferometry
This work presents a new approach for three-dimensional (3D) coastal deformation simulation using differential synthetic aperture interferometry (DInSAR). In doing so, conventional InSAR procedures are implemented to three repeat passes of RADARSAT-1 SAR fine mode data (F1). Further, the DInSAR method is implemented with the phase unwrapping technique. Consequently, DInSAR is used to eliminate the phase decorrelation impact from the interferograms. The study shows the accurate performance of DInSAR with a root mean square error of 0:02±0:21 m and 90% confidence intervals. In conclusion, the DInSAR technique produces an accurate 3D coastal geomorphology reconstruction.
期刊介绍:
A Journal of Physical Sciences: Zeitschrift für Naturforschung A (ZNA) is an international scientific journal which publishes original research papers from all areas of experimental and theoretical physics. Authors are encouraged to pay particular attention to a clear exposition of their respective subject, addressing a wide readership. In accordance with the name of our journal, which means “Journal for Natural Sciences”, manuscripts submitted to ZNA should have a tangible connection to actual physical phenomena. In particular, we welcome experiment-oriented contributions.